12n
0036
(K12n
0036
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 10 11 5 1 12 7 8
Solving Sequence
7,11 4,8
5 12 1 10 6 3 2 9
c
7
c
4
c
11
c
12
c
10
c
6
c
3
c
2
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
54
8u
53
+ ··· + u
2
+ 2b, 4u
54
+ 8u
53
+ ··· + 2a + 7, u
55
3u
54
+ ··· 3u + 1i
I
u
2
= h−u
2
a + b, u
4
u
2
a + 2u
3
+ a
2
au + 3u
2
a + 2u + 1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4u
54
8u
53
+· · ·+u
2
+2b, 4u
54
+8u
53
+· · ·+2a+7, u
55
3u
54
+· · ·3u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
2u
54
4u
53
+ ··· + 4u
7
2
2u
54
+ 4u
53
+ ··· u
3
1
2
u
2
a
8
=
1
u
2
a
5
=
2u
53
4u
52
+ ··· +
1
2
u
2
3
2
u
53
+
5
2
u
52
+ ···
9
2
u
2
+ 2u
a
12
=
u
u
a
1
=
u
3
u
5
+ u
3
+ u
a
10
=
u
3
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
3
=
u
54
3
2
u
53
+ ··· + 3u 2
u
54
+
3
2
u
53
+ ··· 2u
2
+
3
2
u
a
2
=
1
2
u
53
u
52
+ ··· +
7
2
u
3
+ 1
1
2
u
53
+ u
52
+ ··· + 2u
3
+
1
2
u
a
9
=
u
11
2u
9
2u
7
u
3
u
13
3u
11
5u
9
4u
7
2u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
54
33
2
u
53
+ ··· + 20u +
1
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
55
+ 32u
54
+ ··· 18u 1
c
2
, c
5
u
55
+ 6u
54
+ ··· 6u 1
c
3
u
55
6u
54
+ ··· 18u 1
c
4
, c
8
u
55
u
54
+ ··· + 1024u 1024
c
6
, c
12
u
55
3u
54
+ ··· + 379u 73
c
7
, c
11
u
55
+ 3u
54
+ ··· 3u 1
c
9
u
55
+ 3u
54
+ ··· + 3u 1
c
10
u
55
29u
54
+ ··· 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
55
12y
54
+ ··· 414y 1
c
2
, c
5
y
55
+ 32y
54
+ ··· 18y 1
c
3
y
55
56y
54
+ ··· 2y 1
c
4
, c
8
y
55
+ 55y
54
+ ··· 15728640y 1048576
c
6
, c
12
y
55
35y
54
+ ··· 79739y 5329
c
7
, c
11
y
55
+ 29y
54
+ ··· 3y 1
c
9
y
55
+ 65y
54
+ ··· 3y 1
c
10
y
55
3y
54
+ ··· + 29y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.629268 + 0.778172I
a = 1.18547 + 2.27384I
b = 2.40744 0.92801I
6.39910 + 2.43818I 1.82381 3.17764I
u = 0.629268 0.778172I
a = 1.18547 2.27384I
b = 2.40744 + 0.92801I
6.39910 2.43818I 1.82381 + 3.17764I
u = 0.665364 + 0.741506I
a = 1.20117 2.12038I
b = 2.43399 + 0.82779I
10.52100 2.56871I 1.299980 + 0.183319I
u = 0.665364 0.741506I
a = 1.20117 + 2.12038I
b = 2.43399 0.82779I
10.52100 + 2.56871I 1.299980 0.183319I
u = 0.495253 + 0.911871I
a = 0.959744 0.326051I
b = 1.043700 + 0.351476I
1.67813 2.05989I 0. + 3.35425I
u = 0.495253 0.911871I
a = 0.959744 + 0.326051I
b = 1.043700 0.351476I
1.67813 + 2.05989I 0. 3.35425I
u = 0.648513 + 0.820784I
a = 1.28463 2.31577I
b = 2.45034 + 0.98315I
10.29050 + 7.60349I 0. 6.23847I
u = 0.648513 0.820784I
a = 1.28463 + 2.31577I
b = 2.45034 0.98315I
10.29050 7.60349I 0. + 6.23847I
u = 0.833853 + 0.223712I
a = 0.45368 1.70191I
b = 1.47926 + 0.68394I
7.04904 + 9.41227I 0.67128 5.21491I
u = 0.833853 0.223712I
a = 0.45368 + 1.70191I
b = 1.47926 0.68394I
7.04904 9.41227I 0.67128 + 5.21491I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.256410 + 0.818450I
a = 0.479621 0.389548I
b = 0.216555 + 0.452958I
0.489184 1.277770I 5.06679 + 5.28091I
u = 0.256410 0.818450I
a = 0.479621 + 0.389548I
b = 0.216555 0.452958I
0.489184 + 1.277770I 5.06679 5.28091I
u = 0.795256 + 0.293554I
a = 0.39342 1.83875I
b = 1.14407 + 0.90240I
8.21623 0.41016I 0.923933 + 0.833875I
u = 0.795256 0.293554I
a = 0.39342 + 1.83875I
b = 1.14407 0.90240I
8.21623 + 0.41016I 0.923933 0.833875I
u = 0.394472 + 1.087690I
a = 1.50889 + 0.99463I
b = 1.397460 + 0.027206I
1.89318 0.05192I 0
u = 0.394472 1.087690I
a = 1.50889 0.99463I
b = 1.397460 0.027206I
1.89318 + 0.05192I 0
u = 0.795981 + 0.235146I
a = 0.47257 + 1.79828I
b = 1.27580 0.65059I
3.68870 + 4.09212I 3.08841 2.21678I
u = 0.795981 0.235146I
a = 0.47257 1.79828I
b = 1.27580 + 0.65059I
3.68870 4.09212I 3.08841 + 2.21678I
u = 0.522439 + 0.613476I
a = 0.397063 + 1.308290I
b = 0.133932 0.914279I
2.54336 2.12347I 1.98097 + 3.91876I
u = 0.522439 0.613476I
a = 0.397063 1.308290I
b = 0.133932 + 0.914279I
2.54336 + 2.12347I 1.98097 3.91876I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.798934 + 0.043384I
a = 0.0979918 + 0.0882666I
b = 0.341667 0.572577I
1.82991 1.15915I 1.11016 1.39618I
u = 0.798934 0.043384I
a = 0.0979918 0.0882666I
b = 0.341667 + 0.572577I
1.82991 + 1.15915I 1.11016 + 1.39618I
u = 0.238525 + 1.182470I
a = 0.409365 0.546134I
b = 0.256958 0.560255I
3.53580 3.51533I 0
u = 0.238525 1.182470I
a = 0.409365 + 0.546134I
b = 0.256958 + 0.560255I
3.53580 + 3.51533I 0
u = 0.428974 + 1.129030I
a = 0.472967 0.859039I
b = 1.56190 + 1.45145I
4.01128 1.20704I 0
u = 0.428974 1.129030I
a = 0.472967 + 0.859039I
b = 1.56190 1.45145I
4.01128 + 1.20704I 0
u = 0.306193 + 1.184120I
a = 0.040681 + 0.327783I
b = 0.140846 + 0.893676I
0.680788 + 0.637411I 0
u = 0.306193 1.184120I
a = 0.040681 0.327783I
b = 0.140846 0.893676I
0.680788 0.637411I 0
u = 0.466924 + 1.132680I
a = 0.97235 + 1.11590I
b = 2.29775 1.19065I
3.73819 6.60281I 0
u = 0.466924 1.132680I
a = 0.97235 1.11590I
b = 2.29775 + 1.19065I
3.73819 + 6.60281I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.445970 + 1.141590I
a = 0.898688 0.908912I
b = 0.977538 + 0.234458I
4.49847 + 3.98279I 0
u = 0.445970 1.141590I
a = 0.898688 + 0.908912I
b = 0.977538 0.234458I
4.49847 3.98279I 0
u = 0.504119 + 1.119490I
a = 0.72422 + 1.48566I
b = 1.143880 0.723214I
1.05362 + 7.50380I 0
u = 0.504119 1.119490I
a = 0.72422 1.48566I
b = 1.143880 + 0.723214I
1.05362 7.50380I 0
u = 0.006646 + 0.753586I
a = 1.23924 0.91553I
b = 0.221110 + 1.001110I
0.94796 1.37354I 8.29726 + 4.59305I
u = 0.006646 0.753586I
a = 1.23924 + 0.91553I
b = 0.221110 1.001110I
0.94796 + 1.37354I 8.29726 4.59305I
u = 0.308957 + 1.222630I
a = 0.150304 0.576649I
b = 0.145017 0.812504I
2.51298 + 5.72465I 0
u = 0.308957 1.222630I
a = 0.150304 + 0.576649I
b = 0.145017 + 0.812504I
2.51298 5.72465I 0
u = 0.562093 + 1.144990I
a = 2.01573 0.76521I
b = 2.80550 0.09124I
5.70109 4.64931I 0
u = 0.562093 1.144990I
a = 2.01573 + 0.76521I
b = 2.80550 + 0.09124I
5.70109 + 4.64931I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.543221 + 1.166590I
a = 2.03351 + 1.01526I
b = 3.03630 0.03630I
0.93977 9.06965I 0
u = 0.543221 1.166590I
a = 2.03351 1.01526I
b = 3.03630 + 0.03630I
0.93977 + 9.06965I 0
u = 0.437917 + 1.210660I
a = 0.760392 + 0.093272I
b = 0.473659 0.350913I
5.51374 + 3.19066I 0
u = 0.437917 1.210660I
a = 0.760392 0.093272I
b = 0.473659 + 0.350913I
5.51374 3.19066I 0
u = 0.472267 + 1.211330I
a = 0.320209 0.705624I
b = 0.049480 + 0.606670I
5.27082 + 5.76680I 0
u = 0.472267 1.211330I
a = 0.320209 + 0.705624I
b = 0.049480 0.606670I
5.27082 5.76680I 0
u = 0.550577 + 1.182870I
a = 2.18265 1.04941I
b = 3.13565 0.09179I
4.1957 14.5134I 0
u = 0.550577 1.182870I
a = 2.18265 + 1.04941I
b = 3.13565 + 0.09179I
4.1957 + 14.5134I 0
u = 0.627951 + 0.254073I
a = 0.152563 + 0.574638I
b = 1.207510 + 0.084242I
1.41318 3.06748I 0.44741 + 4.00287I
u = 0.627951 0.254073I
a = 0.152563 0.574638I
b = 1.207510 0.084242I
1.41318 + 3.06748I 0.44741 4.00287I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.245896 + 0.622986I
a = 1.09436 + 1.93010I
b = 0.66336 1.42809I
0.12059 + 2.86553I 2.35860 + 0.38000I
u = 0.245896 0.622986I
a = 1.09436 1.93010I
b = 0.66336 + 1.42809I
0.12059 2.86553I 2.35860 0.38000I
u = 0.626935
a = 0.0900412
b = 0.792661
1.42624 7.14390
u = 0.586127 + 0.078855I
a = 0.17208 + 2.32899I
b = 0.269979 0.036468I
0.91267 + 2.50494I 1.11924 3.76856I
u = 0.586127 0.078855I
a = 0.17208 2.32899I
b = 0.269979 + 0.036468I
0.91267 2.50494I 1.11924 + 3.76856I
10
II. I
u
2
=
h−u
2
a+b, u
4
u
2
a+2u
3
+a
2
au+3u
2
a+2u+1, u
5
+u
4
+2u
3
+u
2
+u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
a
u
2
a
a
8
=
1
u
2
a
5
=
a
u
2
a
a
12
=
u
u
a
1
=
u
3
u
4
u
3
u
2
1
a
10
=
u
3
u
3
+ u
a
6
=
u
3
u
4
+ u
3
+ u
2
+ 1
a
3
=
u
3
a
u
3
a + au
a
2
=
u
3
a u
2
u 1
u
3
a u
4
u
3
+ au u
2
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
a + u
4
+ 6u
3
6au + 7u
2
a + 6u + 7
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
8
u
10
c
6
, c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
7
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
10
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
c
11
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
8
y
10
c
6
, c
9
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
7
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
10
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.80632 + 1.36366I
b = 0.307991 1.215160I
0.32910 3.56046I 5.91654 + 9.74472I
u = 0.339110 + 0.822375I
a = 1.58413 + 0.01647I
b = 0.898363 + 0.874307I
0.329100 + 0.499304I 1.60756 + 0.92266I
u = 0.339110 0.822375I
a = 0.80632 1.36366I
b = 0.307991 + 1.215160I
0.32910 + 3.56046I 5.91654 9.74472I
u = 0.339110 0.822375I
a = 1.58413 0.01647I
b = 0.898363 0.874307I
0.329100 0.499304I 1.60756 0.92266I
u = 0.766826
a = 0.410598 + 0.711177I
b = 0.241441 + 0.418187I
2.40108 2.02988I 6.55976 + 4.16430I
u = 0.766826
a = 0.410598 0.711177I
b = 0.241441 0.418187I
2.40108 + 2.02988I 6.55976 4.16430I
u = 0.455697 + 1.200150I
a = 0.252108 + 0.649344I
b = 1.021040 0.524691I
5.87256 + 6.43072I 10.62344 8.02599I
u = 0.455697 + 1.200150I
a = 0.436295 0.543004I
b = 0.056121 + 1.146590I
5.87256 + 2.37095I 9.29269 + 1.50431I
u = 0.455697 1.200150I
a = 0.252108 0.649344I
b = 1.021040 + 0.524691I
5.87256 6.43072I 10.62344 + 8.02599I
u = 0.455697 1.200150I
a = 0.436295 + 0.543004I
b = 0.056121 1.146590I
5.87256 2.37095I 9.29269 1.50431I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
55
+ 32u
54
+ ··· 18u 1)
c
2
((u
2
+ u + 1)
5
)(u
55
+ 6u
54
+ ··· 6u 1)
c
3
((u
2
u + 1)
5
)(u
55
6u
54
+ ··· 18u 1)
c
4
, c
8
u
10
(u
55
u
54
+ ··· + 1024u 1024)
c
5
((u
2
u + 1)
5
)(u
55
+ 6u
54
+ ··· 6u 1)
c
6
((u
5
u
4
2u
3
+ u
2
+ u + 1)
2
)(u
55
3u
54
+ ··· + 379u 73)
c
7
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
)(u
55
+ 3u
54
+ ··· 3u 1)
c
9
((u
5
u
4
2u
3
+ u
2
+ u + 1)
2
)(u
55
+ 3u
54
+ ··· + 3u 1)
c
10
((u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
)(u
55
29u
54
+ ··· 3u + 1)
c
11
((u
5
u
4
+ 2u
3
u
2
+ u 1)
2
)(u
55
+ 3u
54
+ ··· 3u 1)
c
12
((u
5
+ u
4
2u
3
u
2
+ u 1)
2
)(u
55
3u
54
+ ··· + 379u 73)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
55
12y
54
+ ··· 414y 1)
c
2
, c
5
((y
2
+ y + 1)
5
)(y
55
+ 32y
54
+ ··· 18y 1)
c
3
((y
2
+ y + 1)
5
)(y
55
56y
54
+ ··· 2y 1)
c
4
, c
8
y
10
(y
55
+ 55y
54
+ ··· 1.57286 × 10
7
y 1048576)
c
6
, c
12
((y
5
5y
4
+ 8y
3
3y
2
y 1)
2
)(y
55
35y
54
+ ··· 79739y 5329)
c
7
, c
11
((y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
)(y
55
+ 29y
54
+ ··· 3y 1)
c
9
((y
5
5y
4
+ 8y
3
3y
2
y 1)
2
)(y
55
+ 65y
54
+ ··· 3y 1)
c
10
((y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
)(y
55
3y
54
+ ··· + 29y 1)
16