12n
0039
(K12n
0039
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 10 11 5 1 12 8 7
Solving Sequence
7,11 4,8
5 12 1 10 6 3 2 9
c
7
c
4
c
11
c
12
c
10
c
6
c
3
c
2
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
57
u
56
+ ··· + 2b 4, 13u
57
29u
56
+ ··· + 2a 9, u
58
3u
57
+ ··· 3u + 1i
I
u
2
= h−u
2
a + b, u
4
a u
3
a + u
2
a u
3
+ a
2
+ au u
2
+ 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
57
u
56
+· · ·+2b4, 13u
57
29u
56
+· · ·+2a9, u
58
3u
57
+· · ·3u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
13
2
u
57
+
29
2
u
56
+ ···
33
2
u +
9
2
1
2
u
57
+
1
2
u
56
+ ···
1
2
u + 2
a
8
=
1
u
2
a
5
=
7
2
u
57
+
15
2
u
56
+ ···
17
2
u +
3
2
3
2
u
57
5
2
u
56
+ ··· 3u
2
+
5
2
u
a
12
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
6
=
u
8
u
6
+ u
4
+ 1
u
10
2u
8
+ 3u
6
2u
4
+ u
2
a
3
=
5u
57
+ 11u
56
+ ···
23
2
u +
7
2
u
57
u
56
+ ··· +
3
2
u + 1
a
2
=
u
57
+ 2u
56
+ ···
3
2
u +
3
2
1
2
u
54
1
2
u
53
+ ··· +
1
2
u
2
+
1
2
u
a
9
=
u
11
+ 2u
9
2u
7
+ u
3
u
11
+ 3u
9
4u
7
+ 3u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
57
51
2
u
56
+ ··· +
53
2
u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 35u
57
+ ··· + 9u + 1
c
2
, c
5
u
58
+ 7u
57
+ ··· + 5u + 1
c
3
u
58
7u
57
+ ··· 27u + 2
c
4
, c
8
u
58
u
57
+ ··· + 8192u + 4096
c
6
u
58
3u
57
+ ··· + 2221u + 937
c
7
, c
11
u
58
+ 3u
57
+ ··· + 3u + 1
c
9
u
58
+ 3u
57
+ ··· + 3u + 1
c
10
u
58
+ 29u
57
+ ··· + 3u + 1
c
12
u
58
+ 9u
57
+ ··· + 689u + 176
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
17y
57
+ ··· + 213y + 1
c
2
, c
5
y
58
+ 35y
57
+ ··· + 9y + 1
c
3
y
58
69y
57
+ ··· 217y + 4
c
4
, c
8
y
58
+ 65y
57
+ ··· + 234881024y + 16777216
c
6
y
58
+ 11y
57
+ ··· 1936315y + 877969
c
7
, c
11
y
58
29y
57
+ ··· 3y + 1
c
9
y
58
+ 71y
57
+ ··· 3y + 1
c
10
y
58
+ 3y
57
+ ··· + 29y + 1
c
12
y
58
+ 23y
57
+ ··· + 427807y + 30976
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.742693 + 0.676776I
a = 1.10927 + 1.46827I
b = 1.018590 0.353888I
6.05935 7.31192I 0.79047 + 6.14491I
u = 0.742693 0.676776I
a = 1.10927 1.46827I
b = 1.018590 + 0.353888I
6.05935 + 7.31192I 0.79047 6.14491I
u = 0.766215 + 0.621161I
a = 1.04148 1.38838I
b = 1.014310 + 0.129064I
2.46464 2.40510I 3.55783 + 3.26427I
u = 0.766215 0.621161I
a = 1.04148 + 1.38838I
b = 1.014310 0.129064I
2.46464 + 2.40510I 3.55783 3.26427I
u = 0.965439 + 0.350364I
a = 0.543909 0.897747I
b = 0.404805 0.591191I
1.64630 1.27469I 1.46430 + 0.39248I
u = 0.965439 0.350364I
a = 0.543909 + 0.897747I
b = 0.404805 + 0.591191I
1.64630 + 1.27469I 1.46430 0.39248I
u = 0.830822 + 0.646667I
a = 1.15502 + 1.22562I
b = 1.220950 0.029193I
6.32401 + 2.24227I 0
u = 0.830822 0.646667I
a = 1.15502 1.22562I
b = 1.220950 + 0.029193I
6.32401 2.24227I 0
u = 1.067360 + 0.176258I
a = 1.04041 + 1.60217I
b = 1.155750 + 0.597676I
3.60243 + 0.04887I 5.83111 + 0.I
u = 1.067360 0.176258I
a = 1.04041 1.60217I
b = 1.155750 0.597676I
3.60243 0.04887I 5.83111 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.282860 + 0.819808I
a = 0.45994 1.98856I
b = 1.20420 + 3.10728I
8.53365 + 9.60020I 0.29238 5.04135I
u = 0.282860 0.819808I
a = 0.45994 + 1.98856I
b = 1.20420 3.10728I
8.53365 9.60020I 0.29238 + 5.04135I
u = 1.066250 + 0.414950I
a = 0.25930 + 2.89782I
b = 1.64743 + 2.38773I
2.23944 + 0.13129I 0
u = 1.066250 0.414950I
a = 0.25930 2.89782I
b = 1.64743 2.38773I
2.23944 0.13129I 0
u = 1.051460 + 0.470149I
a = 0.92877 1.78383I
b = 1.42872 1.74233I
0.78474 1.84538I 0
u = 1.051460 0.470149I
a = 0.92877 + 1.78383I
b = 1.42872 + 1.74233I
0.78474 + 1.84538I 0
u = 0.213505 + 0.811297I
a = 0.52309 2.11889I
b = 0.41666 + 3.33148I
9.55678 0.64630I 1.020161 + 0.779335I
u = 0.213505 0.811297I
a = 0.52309 + 2.11889I
b = 0.41666 3.33148I
9.55678 + 0.64630I 1.020161 0.779335I
u = 0.413914 + 0.728124I
a = 0.200276 + 0.074948I
b = 0.458662 0.847775I
0.99825 2.10282I 0.620949 0.071334I
u = 0.413914 0.728124I
a = 0.200276 0.074948I
b = 0.458662 + 0.847775I
0.99825 + 2.10282I 0.620949 + 0.071334I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.258688 + 0.794593I
a = 0.52040 + 2.05773I
b = 0.84030 3.00010I
4.98964 + 4.15775I 2.66640 2.12473I
u = 0.258688 0.794593I
a = 0.52040 2.05773I
b = 0.84030 + 3.00010I
4.98964 4.15775I 2.66640 + 2.12473I
u = 1.060250 + 0.490356I
a = 0.10148 1.91006I
b = 1.30941 1.14927I
0.61621 + 4.67232I 0
u = 1.060250 0.490356I
a = 0.10148 + 1.91006I
b = 1.30941 + 1.14927I
0.61621 4.67232I 0
u = 0.501104 + 0.655716I
a = 0.0331531 0.0143983I
b = 0.466931 + 0.591950I
1.49411 0.06269I 3.02061 + 1.27535I
u = 0.501104 0.655716I
a = 0.0331531 + 0.0143983I
b = 0.466931 0.591950I
1.49411 + 0.06269I 3.02061 1.27535I
u = 1.046050 + 0.556065I
a = 0.395453 1.090660I
b = 0.524046 0.784867I
0.12505 + 4.79073I 0
u = 1.046050 0.556065I
a = 0.395453 + 1.090660I
b = 0.524046 + 0.784867I
0.12505 4.79073I 0
u = 1.135510 + 0.371005I
a = 2.45266 + 0.82876I
b = 0.97469 + 2.43445I
5.61981 0.51916I 0
u = 1.135510 0.371005I
a = 2.45266 0.82876I
b = 0.97469 2.43445I
5.61981 + 0.51916I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.094110 + 0.493111I
a = 1.25150 + 2.49948I
b = 1.88271 + 2.81236I
1.62734 6.95830I 0
u = 1.094110 0.493111I
a = 1.25150 2.49948I
b = 1.88271 2.81236I
1.62734 + 6.95830I 0
u = 1.185760 + 0.284132I
a = 0.65680 + 4.29093I
b = 2.21766 + 4.41254I
9.47227 0.82173I 0
u = 1.185760 0.284132I
a = 0.65680 4.29093I
b = 2.21766 4.41254I
9.47227 + 0.82173I 0
u = 1.199640 + 0.258578I
a = 1.04819 4.24993I
b = 1.69840 4.66322I
13.2521 6.3035I 0
u = 1.199640 0.258578I
a = 1.04819 + 4.24993I
b = 1.69840 + 4.66322I
13.2521 + 6.3035I 0
u = 1.087500 + 0.582128I
a = 1.317980 + 0.269553I
b = 0.386637 + 1.148330I
0.97594 + 7.10425I 0
u = 1.087500 0.582128I
a = 1.317980 0.269553I
b = 0.386637 1.148330I
0.97594 7.10425I 0
u = 1.136660 + 0.500162I
a = 1.47085 + 2.25651I
b = 2.79786 + 0.33790I
4.72739 + 7.37382I 0
u = 1.136660 0.500162I
a = 1.47085 2.25651I
b = 2.79786 0.33790I
4.72739 7.37382I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.203940 + 0.312053I
a = 0.40507 4.64412I
b = 2.83156 4.64587I
13.9557 + 4.2640I 0
u = 1.203940 0.312053I
a = 0.40507 + 4.64412I
b = 2.83156 + 4.64587I
13.9557 4.2640I 0
u = 0.660650 + 0.306406I
a = 0.914280 0.165501I
b = 0.997317 0.499930I
0.62635 + 2.91588I 3.27340 4.97212I
u = 0.660650 0.306406I
a = 0.914280 + 0.165501I
b = 0.997317 + 0.499930I
0.62635 2.91588I 3.27340 + 4.97212I
u = 1.157920 + 0.552647I
a = 1.67092 + 3.72168I
b = 2.68114 + 4.31965I
7.63974 9.17351I 0
u = 1.157920 0.552647I
a = 1.67092 3.72168I
b = 2.68114 4.31965I
7.63974 + 9.17351I 0
u = 1.160620 + 0.568042I
a = 1.47283 3.87780I
b = 2.98552 4.18011I
11.1402 14.7500I 0
u = 1.160620 0.568042I
a = 1.47283 + 3.87780I
b = 2.98552 + 4.18011I
11.1402 + 14.7500I 0
u = 1.174810 + 0.538366I
a = 2.03584 3.78686I
b = 2.49310 4.78492I
12.40280 4.33791I 0
u = 1.174810 0.538366I
a = 2.03584 + 3.78686I
b = 2.49310 + 4.78492I
12.40280 + 4.33791I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.172748 + 0.667933I
a = 0.405277 + 0.856827I
b = 1.48790 0.60667I
2.02121 2.91480I 0.43838 + 3.64289I
u = 0.172748 0.667933I
a = 0.405277 0.856827I
b = 1.48790 + 0.60667I
2.02121 + 2.91480I 0.43838 3.64289I
u = 0.406360 + 0.529126I
a = 0.238632 0.235635I
b = 0.732719 + 0.328694I
1.267410 0.491154I 7.40856 + 1.29163I
u = 0.406360 0.529126I
a = 0.238632 + 0.235635I
b = 0.732719 0.328694I
1.267410 + 0.491154I 7.40856 1.29163I
u = 0.447120 + 0.450989I
a = 0.61398 2.20773I
b = 0.687783 + 0.451795I
0.99990 2.08688I 2.42768 + 5.77119I
u = 0.447120 0.450989I
a = 0.61398 + 2.20773I
b = 0.687783 0.451795I
0.99990 + 2.08688I 2.42768 5.77119I
u = 0.291693 + 0.528701I
a = 0.15373 + 2.35394I
b = 0.550148 1.147150I
0.62843 + 2.75213I 0.46673 2.33667I
u = 0.291693 0.528701I
a = 0.15373 2.35394I
b = 0.550148 + 1.147150I
0.62843 2.75213I 0.46673 + 2.33667I
10
II. I
u
2
=
h−u
2
a+b, u
4
au
3
a+u
2
au
3
+a
2
+auu
2
+1, u
6
+u
5
u
4
2u
3
+u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
a
u
2
a
a
8
=
1
u
2
a
5
=
a
u
2
a
a
12
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
10
=
u
3
u
5
u
3
+ u
a
6
=
u
3
u
3
u
a
3
=
u
3
a
u
5
a u
3
a + au
a
2
=
u
3
a u
4
u
3
+ u
2
+ u
u
5
a u
3
a u
3
+ au + u + 1
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
5
a u
4
a + 4u
3
a + 4u
4
+ 2u
2
a u
3
4au 5u
2
4u + 3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
4
, c
8
u
12
c
6
, c
9
, c
11
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
10
, c
12
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
6
c
4
, c
8
y
12
c
6
, c
7
, c
9
c
11
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
10
, c
12
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.578212 + 1.125030I
b = 0.136196 + 1.374220I
1.89061 + 1.10558I 0.42156 3.46269I
u = 1.002190 + 0.295542I
a = 1.263410 0.061767I
b = 1.122010 0.805060I
1.89061 2.95419I 3.93112 + 4.16322I
u = 1.002190 0.295542I
a = 0.578212 1.125030I
b = 0.136196 1.374220I
1.89061 1.10558I 0.42156 + 3.46269I
u = 1.002190 0.295542I
a = 1.263410 + 0.061767I
b = 1.122010 + 0.805060I
1.89061 + 2.95419I 3.93112 4.16322I
u = 0.428243 + 0.664531I
a = 0.224551 + 0.930349I
b = 0.471538 0.368031I
1.89061 + 1.10558I 5.61650 2.84542I
u = 0.428243 + 0.664531I
a = 0.693431 0.659641I
b = 0.554493 0.224349I
1.89061 2.95419I 7.50338 + 4.33850I
u = 0.428243 0.664531I
a = 0.224551 0.930349I
b = 0.471538 + 0.368031I
1.89061 1.10558I 5.61650 + 2.84542I
u = 0.428243 0.664531I
a = 0.693431 + 0.659641I
b = 0.554493 + 0.224349I
1.89061 + 2.95419I 7.50338 4.33850I
u = 1.073950 + 0.558752I
a = 0.036219 + 0.825237I
b = 0.959936 + 0.737627I
3.66314I 1.09315 1.33646I
u = 1.073950 + 0.558752I
a = 0.696567 0.443985I
b = 1.118770 + 0.462515I
7.72290I 4.13964 9.04329I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 0.036219 0.825237I
b = 0.959936 0.737627I
3.66314I 1.09315 + 1.33646I
u = 1.073950 0.558752I
a = 0.696567 + 0.443985I
b = 1.118770 0.462515I
7.72290I 4.13964 + 9.04329I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
58
+ 35u
57
+ ··· + 9u + 1)
c
2
((u
2
+ u + 1)
6
)(u
58
+ 7u
57
+ ··· + 5u + 1)
c
3
((u
2
u + 1)
6
)(u
58
7u
57
+ ··· 27u + 2)
c
4
, c
8
u
12
(u
58
u
57
+ ··· + 8192u + 4096)
c
5
((u
2
u + 1)
6
)(u
58
+ 7u
57
+ ··· + 5u + 1)
c
6
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
58
3u
57
+ ··· + 2221u + 937)
c
7
((u
6
+ u
5
u
4
2u
3
+ u + 1)
2
)(u
58
+ 3u
57
+ ··· + 3u + 1)
c
9
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
58
+ 3u
57
+ ··· + 3u + 1)
c
10
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
58
+ 29u
57
+ ··· + 3u + 1)
c
11
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
58
+ 3u
57
+ ··· + 3u + 1)
c
12
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
58
+ 9u
57
+ ··· + 689u + 176)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
58
17y
57
+ ··· + 213y + 1)
c
2
, c
5
((y
2
+ y + 1)
6
)(y
58
+ 35y
57
+ ··· + 9y + 1)
c
3
((y
2
+ y + 1)
6
)(y
58
69y
57
+ ··· 217y + 4)
c
4
, c
8
y
12
(y
58
+ 65y
57
+ ··· + 2.34881 × 10
8
y + 1.67772 × 10
7
)
c
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
58
+ 11y
57
+ ··· 1936315y + 877969)
c
7
, c
11
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
)(y
58
29y
57
+ ··· 3y + 1)
c
9
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
)(y
58
+ 71y
57
+ ··· 3y + 1)
c
10
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
58
+ 3y
57
+ ··· + 29y + 1)
c
12
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
58
+ 23y
57
+ ··· + 427807y + 30976)
17