12n
0045
(K12n
0045
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 11 5 6 7 10 8
Solving Sequence
2,6
5
3,8
9 10 1 4 12 7 11
c
5
c
2
c
8
c
9
c
1
c
4
c
12
c
6
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−148u
29
963u
28
+ ··· + 32b 233, 153u
29
960u
28
+ ··· + 32a 98, u
30
+ 7u
29
+ ··· + 7u + 1i
I
u
2
= h−au + b + a, a
6
+ a
5
u a
4
u + a
4
+ 2a
3
au + a + 1, u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−148u
29
963u
28
+ · · · + 32b 233, 153u
29
960u
28
+ · · · +
32a 98, u
30
+ 7u
29
+ · · · + 7u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
4.78125u
29
+ 30u
28
+ ··· + 28.9688u + 3.06250
4.62500u
29
+ 30.0938u
28
+ ··· + 43.3750u + 7.28125
a
9
=
1.90625u
29
+ 11.6875u
28
+ ··· + 5.09375u 0.750000
3.56250u
29
+ 23.0313u
28
+ ··· + 33.5625u + 5.46875
a
10
=
5.46875u
29
+ 34.7188u
28
+ ··· + 38.6563u + 4.71875
3.56250u
29
+ 23.0313u
28
+ ··· + 33.5625u + 5.46875
a
1
=
u
3
u
5
+ u
3
+ u
a
4
=
u
3
u
3
+ u
a
12
=
0.0312500u
28
0.187500u
27
+ ··· 2.18750u + 0.968750
0.0312500u
29
+ 0.218750u
28
+ ··· + 0.218750u + 0.0312500
a
7
=
9
32
u
29
2u
28
+ ···
81
32
u +
5
8
0.281250u
29
+ 1.71875u
28
+ ··· + 0.531250u + 0.0312500
a
11
=
9
32
u
28
+
27
16
u
27
+ ··· + 2u +
11
32
0.281250u
29
1.65625u
28
+ ··· + 0.843750u + 0.0312500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45
4
u
29
+
1169
16
u
28
+ ··· + 103u +
99
8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 3u
29
+ ··· + 3u + 1
c
2
, c
5
u
30
+ 7u
29
+ ··· + 7u + 1
c
3
u
30
7u
29
+ ··· + 123187u + 9881
c
4
, c
8
u
30
+ u
29
+ ··· + 8192u + 4096
c
6
u
30
+ 9u
29
+ ··· + 57u + 17
c
7
, c
10
u
30
+ 3u
29
+ ··· + u + 1
c
9
, c
12
u
30
3u
29
+ ··· 3u + 1
c
11
u
30
+ 13u
29
+ ··· 7u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ 55y
29
+ ··· + 63y + 1
c
2
, c
5
y
30
+ 3y
29
+ ··· + 3y + 1
c
3
y
30
+ 107y
29
+ ··· + 1844116003y + 97634161
c
4
, c
8
y
30
+ 65y
29
+ ··· + 161480704y
2
+ 16777216
c
6
y
30
9y
29
+ ··· + 2531y + 289
c
7
, c
10
y
30
13y
29
+ ··· + 7y + 1
c
9
, c
12
y
30
53y
29
+ ··· + 7y + 1
c
11
y
30
+ 11y
29
+ ··· 89y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.156149 + 0.923590I
a = 1.55521 0.59601I
b = 0.641878 + 0.220216I
2.03388 + 4.90769I 5.49958 7.49846I
u = 0.156149 0.923590I
a = 1.55521 + 0.59601I
b = 0.641878 0.220216I
2.03388 4.90769I 5.49958 + 7.49846I
u = 0.399490 + 0.989549I
a = 0.655955 + 0.923964I
b = 0.207702 0.507122I
0.76957 + 1.31164I 0.008085 1.158902I
u = 0.399490 0.989549I
a = 0.655955 0.923964I
b = 0.207702 + 0.507122I
0.76957 1.31164I 0.008085 + 1.158902I
u = 0.918172 + 0.122403I
a = 0.292882 + 0.357499I
b = 0.60497 + 1.73623I
2.37348 + 2.46946I 2.98715 3.45316I
u = 0.918172 0.122403I
a = 0.292882 0.357499I
b = 0.60497 1.73623I
2.37348 2.46946I 2.98715 + 3.45316I
u = 0.780975 + 0.876399I
a = 1.049250 0.803341I
b = 0.003320 1.369010I
1.59076 + 0.61155I 0.819771 + 0.666887I
u = 0.780975 0.876399I
a = 1.049250 + 0.803341I
b = 0.003320 + 1.369010I
1.59076 0.61155I 0.819771 0.666887I
u = 0.362356 + 0.695450I
a = 0.993697 0.057570I
b = 0.0321747 + 0.0227484I
0.194740 + 1.399730I 2.02435 4.86797I
u = 0.362356 0.695450I
a = 0.993697 + 0.057570I
b = 0.0321747 0.0227484I
0.194740 1.399730I 2.02435 + 4.86797I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.724731 + 1.015800I
a = 0.79644 + 1.28595I
b = 1.11851 + 1.13827I
1.10886 + 5.31866I 0.13308 5.18400I
u = 0.724731 1.015800I
a = 0.79644 1.28595I
b = 1.11851 1.13827I
1.10886 5.31866I 0.13308 + 5.18400I
u = 0.624839 + 0.318859I
a = 1.57129 0.30420I
b = 1.44565 + 0.98598I
0.78177 6.39042I 0.72567 + 4.22016I
u = 0.624839 0.318859I
a = 1.57129 + 0.30420I
b = 1.44565 0.98598I
0.78177 + 6.39042I 0.72567 4.22016I
u = 0.021362 + 0.665268I
a = 1.74798 + 0.18763I
b = 0.284692 0.540613I
2.74789 1.44408I 8.12661 + 0.68826I
u = 0.021362 0.665268I
a = 1.74798 0.18763I
b = 0.284692 + 0.540613I
2.74789 + 1.44408I 8.12661 0.68826I
u = 0.626826 + 0.181498I
a = 1.68869 + 0.16006I
b = 1.59366 0.59325I
2.71723 1.30741I 2.25892 + 0.04222I
u = 0.626826 0.181498I
a = 1.68869 0.16006I
b = 1.59366 + 0.59325I
2.71723 + 1.30741I 2.25892 0.04222I
u = 1.03232 + 1.03051I
a = 1.33615 1.25080I
b = 2.95729 + 0.40290I
11.18100 3.78919I 2.00000 + 1.99020I
u = 1.03232 1.03051I
a = 1.33615 + 1.25080I
b = 2.95729 0.40290I
11.18100 + 3.78919I 2.00000 1.99020I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.13894 + 0.98249I
a = 0.85062 1.72090I
b = 4.00129 1.44921I
16.0192 + 4.0819I 0
u = 1.13894 0.98249I
a = 0.85062 + 1.72090I
b = 4.00129 + 1.44921I
16.0192 4.0819I 0
u = 1.00742 + 1.12472I
a = 1.90712 1.30827I
b = 3.23563 + 2.16136I
15.4793 11.9246I 0. + 6.30873I
u = 1.00742 1.12472I
a = 1.90712 + 1.30827I
b = 3.23563 2.16136I
15.4793 + 11.9246I 0. 6.30873I
u = 1.12156 + 1.02634I
a = 1.12316 + 1.72616I
b = 4.29671 + 0.57523I
17.7688 1.7617I 0
u = 1.12156 1.02634I
a = 1.12316 1.72616I
b = 4.29671 0.57523I
17.7688 + 1.7617I 0
u = 1.04184 + 1.10803I
a = 1.74324 + 1.46487I
b = 3.74797 1.61674I
17.4515 6.1631I 0
u = 1.04184 1.10803I
a = 1.74324 1.46487I
b = 3.74797 + 1.61674I
17.4515 + 6.1631I 0
u = 0.269490 + 0.299415I
a = 1.99775 0.56157I
b = 0.605235 + 0.631449I
1.76892 + 0.41411I 5.79951 1.41452I
u = 0.269490 0.299415I
a = 1.99775 + 0.56157I
b = 0.605235 0.631449I
1.76892 0.41411I 5.79951 + 1.41452I
7
II. I
u
2
= h−au + b + a, a
6
+ a
5
u a
4
u + a
4
+ 2a
3
au + a + 1, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
8
=
a
au a
a
9
=
a
au a
a
10
=
au
au a
a
1
=
1
0
a
4
=
1
u 1
a
12
=
a
2
u + a
2
1
a
2
u
a
7
=
a
4
+ a
2
u + 1
a
4
u + a
4
a
11
=
a
4
u a
2
u 1
a
4
u + a
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
5
u + a
5
4a
4
u + 4a
4
2a
3
u 5a
2
u + 2a
2
4au + 2a 5u 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
4
, c
8
u
12
c
6
, c
11
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
c
7
, c
9
, c
12
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
10
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
6
c
4
, c
8
y
12
c
6
, c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
7
, c
9
, c
10
c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.245150 + 1.015700I
b = 1.002190 0.295542I
1.89061 + 1.10558I 1.81693 2.49433I
u = 0.500000 + 0.866025I
a = 0.757043 + 0.720154I
b = 1.002190 + 0.295542I
1.89061 + 2.95419I 0.06995 4.17815I
u = 0.500000 + 0.866025I
a = 0.789622 0.038604I
b = 0.428243 0.664531I
1.89061 + 1.10558I 7.01188 1.87706I
u = 0.500000 + 0.866025I
a = 0.361379 0.703135I
b = 0.428243 + 0.664531I
1.89061 + 2.95419I 3.50232 4.35344I
u = 0.500000 + 0.866025I
a = 1.020870 0.650692I
b = 1.073950 0.558752I
3.66314I 1.09315 + 2.75648I
u = 0.500000 + 0.866025I
a = 0.053081 1.209440I
b = 1.073950 + 0.558752I
7.72290I 4.13964 8.90605I
u = 0.500000 0.866025I
a = 0.245150 1.015700I
b = 1.002190 + 0.295542I
1.89061 1.10558I 1.81693 + 2.49433I
u = 0.500000 0.866025I
a = 0.757043 0.720154I
b = 1.002190 0.295542I
1.89061 2.95419I 0.06995 + 4.17815I
u = 0.500000 0.866025I
a = 0.789622 + 0.038604I
b = 0.428243 + 0.664531I
1.89061 1.10558I 7.01188 + 1.87706I
u = 0.500000 0.866025I
a = 0.361379 + 0.703135I
b = 0.428243 0.664531I
1.89061 2.95419I 3.50232 + 4.35344I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 1.020870 + 0.650692I
b = 1.073950 + 0.558752I
3.66314I 1.09315 2.75648I
u = 0.500000 0.866025I
a = 0.053081 + 1.209440I
b = 1.073950 0.558752I
7.72290I 4.13964 + 8.90605I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
30
+ 3u
29
+ ··· + 3u + 1)
c
2
((u
2
+ u + 1)
6
)(u
30
+ 7u
29
+ ··· + 7u + 1)
c
3
((u
2
u + 1)
6
)(u
30
7u
29
+ ··· + 123187u + 9881)
c
4
, c
8
u
12
(u
30
+ u
29
+ ··· + 8192u + 4096)
c
5
((u
2
u + 1)
6
)(u
30
+ 7u
29
+ ··· + 7u + 1)
c
6
((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
)(u
30
+ 9u
29
+ ··· + 57u + 17)
c
7
((u
6
+ u
5
u
4
2u
3
+ u + 1)
2
)(u
30
+ 3u
29
+ ··· + u + 1)
c
9
, c
12
((u
6
+ u
5
u
4
2u
3
+ u + 1)
2
)(u
30
3u
29
+ ··· 3u + 1)
c
10
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
30
+ 3u
29
+ ··· + u + 1)
c
11
((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
)(u
30
+ 13u
29
+ ··· 7u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
30
+ 55y
29
+ ··· + 63y + 1)
c
2
, c
5
((y
2
+ y + 1)
6
)(y
30
+ 3y
29
+ ··· + 3y + 1)
c
3
((y
2
+ y + 1)
6
)(y
30
+ 107y
29
+ ··· + 1.84412 × 10
9
y + 9.76342 × 10
7
)
c
4
, c
8
y
12
(y
30
+ 65y
29
+ ··· + 1.61481 × 10
8
y
2
+ 1.67772 × 10
7
)
c
6
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
30
9y
29
+ ··· + 2531y + 289)
c
7
, c
10
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
)(y
30
13y
29
+ ··· + 7y + 1)
c
9
, c
12
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
)(y
30
53y
29
+ ··· + 7y + 1)
c
11
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
30
+ 11y
29
+ ··· 89y + 1)
14