12n
0049
(K12n
0049
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 10 12 5 7 6 8 11
Solving Sequence
2,6
5 3
1,11
10 7 9 4 8 12
c
5
c
2
c
1
c
10
c
6
c
9
c
4
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−484296105u
35
876453979u
34
+ ··· + 5825897536b + 2936630968,
2622553061u
35
+ 6852014457u
34
+ ··· + 11651795072a + 6583505056, u
36
+ 2u
35
+ ··· 3u + 4i
I
u
2
= h−6a
3
u + 44a
3
29a
2
u + 50a
2
44au + 61b 23a + 26u 28,
2a
4
2a
3
u + 5a
3
2a
2
u + 4au 6a + 5u 3, u
2
u + 1i
I
u
3
= h26u
3
a
2
+ 8a
2
u
2
12u
3
a + 15a
2
u 31u
2
a 12u
3
+ 6a
2
+ 4au + 40u
2
+ 71b 41a + 4u + 30,
2u
3
a
2
+ 4a
2
u
2
2u
3
a + a
3
+ 4a
2
u 5u
2
a u
3
7au u
2
5a + u + 2, u
4
+ u
3
+ u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.84 × 10
8
u
35
8.76 × 10
8
u
34
+ · · · + 5.83 × 10
9
b + 2.94 × 10
9
, 2.62 ×
10
9
u
35
+6.85×10
9
u
34
+· · ·+1.17×10
10
a+6.58×10
9
, u
36
+2u
35
+· · ·3u+4i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
11
=
0.225077u
35
0.588065u
34
+ ··· 2.43489u 0.565021
0.0831282u
35
+ 0.150441u
34
+ ··· 0.808963u 0.504065
a
10
=
0.308205u
35
0.738506u
34
+ ··· 1.62593u 0.0609557
0.0831282u
35
+ 0.150441u
34
+ ··· 0.808963u 0.504065
a
7
=
0.00526049u
35
+ 0.0984092u
34
+ ··· 1.00467u + 1.90403
0.130367u
35
0.265551u
34
+ ··· + 0.257479u 0.749489
a
9
=
0.315652u
35
0.320533u
34
+ ··· 3.86030u + 1.93751
0.213900u
35
0.524671u
34
+ ··· + 1.76935u 2.11821
a
4
=
u
3
u
3
+ u
a
8
=
0.448719u
35
0.603542u
34
+ ··· 4.28587u + 1.06239
0.174790u
35
0.478417u
34
+ ··· + 2.25099u 2.05071
a
12
=
0.0695792u
35
+ 0.105837u
34
+ ··· 0.289164u + 0.533612
0.106950u
35
+ 0.199836u
34
+ ··· + 0.0528230u + 0.809104
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1359975379
2912948768
u
35
+
808893889
1456474384
u
34
+ ··· +
371799183
2912948768
u
4242546469
728237192
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
36
+ 10u
35
+ ··· + 255u + 16
c
2
, c
5
u
36
+ 2u
35
+ ··· 3u + 4
c
3
u
36
2u
35
+ ··· + 110445u + 62564
c
4
, c
8
u
36
2u
35
+ ··· 3584u + 2048
c
6
, c
9
, c
10
u
36
+ 3u
35
+ ··· + 4u + 1
c
7
, c
11
u
36
+ 3u
35
+ ··· + 2u + 1
c
12
u
36
23u
35
+ ··· 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
36
+ 34y
35
+ ··· + 19807y + 256
c
2
, c
5
y
36
+ 10y
35
+ ··· + 255y + 16
c
3
y
36
+ 58y
35
+ ··· + 87628895247y + 3914254096
c
4
, c
8
y
36
+ 30y
35
+ ··· + 13893632y + 4194304
c
6
, c
9
, c
10
y
36
+ 27y
35
+ ··· + 6y + 1
c
7
, c
11
y
36
+ 23y
35
+ ··· + 6y + 1
c
12
y
36
17y
35
+ ··· + 6y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.171600 + 1.110920I
a = 0.204619 + 1.345050I
b = 0.216810 1.196860I
4.27639 + 3.16772I 7.58797 3.35954I
u = 0.171600 1.110920I
a = 0.204619 1.345050I
b = 0.216810 + 1.196860I
4.27639 3.16772I 7.58797 + 3.35954I
u = 1.085660 + 0.293972I
a = 0.392792 0.045820I
b = 0.334592 + 0.680226I
4.30159 + 1.64830I 7.39222 3.81709I
u = 1.085660 0.293972I
a = 0.392792 + 0.045820I
b = 0.334592 0.680226I
4.30159 1.64830I 7.39222 + 3.81709I
u = 0.312081 + 0.807793I
a = 1.53056 + 0.47632I
b = 0.04471 1.51818I
7.22153 + 1.57633I 9.02842 6.04950I
u = 0.312081 0.807793I
a = 1.53056 0.47632I
b = 0.04471 + 1.51818I
7.22153 1.57633I 9.02842 + 6.04950I
u = 0.633550 + 0.959306I
a = 1.67177 + 0.11512I
b = 0.190966 + 0.946097I
1.10855 + 3.29892I 6.24385 2.89898I
u = 0.633550 0.959306I
a = 1.67177 0.11512I
b = 0.190966 0.946097I
1.10855 3.29892I 6.24385 + 2.89898I
u = 0.923008 + 0.689836I
a = 0.417168 0.169238I
b = 0.346298 + 0.404592I
3.90051 + 1.86347I 6.48131 1.21859I
u = 0.923008 0.689836I
a = 0.417168 + 0.169238I
b = 0.346298 0.404592I
3.90051 1.86347I 6.48131 + 1.21859I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.874677 + 0.761101I
a = 0.370685 0.647821I
b = 0.59935 1.30228I
3.00591 + 2.79905I 0.254837 1.357172I
u = 0.874677 0.761101I
a = 0.370685 + 0.647821I
b = 0.59935 + 1.30228I
3.00591 2.79905I 0.254837 + 1.357172I
u = 0.433561 + 0.706966I
a = 1.95347 0.21519I
b = 0.16134 + 1.55299I
6.76494 4.64397I 3.32082 3.17287I
u = 0.433561 0.706966I
a = 1.95347 + 0.21519I
b = 0.16134 1.55299I
6.76494 + 4.64397I 3.32082 + 3.17287I
u = 0.458151 + 0.676958I
a = 0.753522 0.718675I
b = 0.019557 0.666846I
0.198612 + 1.374800I 3.09098 4.69147I
u = 0.458151 0.676958I
a = 0.753522 + 0.718675I
b = 0.019557 + 0.666846I
0.198612 1.374800I 3.09098 + 4.69147I
u = 0.471893 + 1.096490I
a = 0.224206 + 0.323614I
b = 0.422956 0.007097I
1.60525 + 3.66384I 4.88856 3.83188I
u = 0.471893 1.096490I
a = 0.224206 0.323614I
b = 0.422956 + 0.007097I
1.60525 3.66384I 4.88856 + 3.83188I
u = 1.024050 + 0.695309I
a = 0.535986 + 0.556491I
b = 0.567012 + 1.295000I
7.75189 + 8.17134I 1.99685 4.00929I
u = 1.024050 0.695309I
a = 0.535986 0.556491I
b = 0.567012 1.295000I
7.75189 8.17134I 1.99685 + 4.00929I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.961809 + 0.820602I
a = 1.181150 + 0.495596I
b = 1.059240 0.084079I
11.48810 + 2.42769I 4.62667 0.56621I
u = 0.961809 0.820602I
a = 1.181150 0.495596I
b = 1.059240 + 0.084079I
11.48810 2.42769I 4.62667 + 0.56621I
u = 0.785168 + 1.017390I
a = 1.76172 0.30795I
b = 0.54057 + 1.40007I
2.20898 8.97826I 1.63229 + 5.82526I
u = 0.785168 1.017390I
a = 1.76172 + 0.30795I
b = 0.54057 1.40007I
2.20898 + 8.97826I 1.63229 5.82526I
u = 0.854722 + 1.028010I
a = 1.038600 + 0.610663I
b = 1.088070 0.034474I
10.81730 9.09210I 3.56135 + 5.43028I
u = 0.854722 1.028010I
a = 1.038600 0.610663I
b = 1.088070 + 0.034474I
10.81730 + 9.09210I 3.56135 5.43028I
u = 0.810811 + 1.108300I
a = 1.71062 + 0.36230I
b = 0.53618 1.37404I
6.4290 14.8448I 0.25659 + 8.03190I
u = 0.810811 1.108300I
a = 1.71062 0.36230I
b = 0.53618 + 1.37404I
6.4290 + 14.8448I 0.25659 8.03190I
u = 0.310580 + 1.362320I
a = 0.544180 0.799588I
b = 0.307951 + 1.137470I
1.47960 + 6.60474I 1.77461 8.22994I
u = 0.310580 1.362320I
a = 0.544180 + 0.799588I
b = 0.307951 1.137470I
1.47960 6.60474I 1.77461 + 8.22994I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.92557 + 1.09311I
a = 0.857998 + 0.114331I
b = 0.322915 0.915206I
2.65507 + 4.99154I 3.97038 7.84261I
u = 0.92557 1.09311I
a = 0.857998 0.114331I
b = 0.322915 + 0.915206I
2.65507 4.99154I 3.97038 + 7.84261I
u = 0.165244 + 0.479278I
a = 1.83465 0.61814I
b = 0.570372 + 0.472484I
0.02049 1.94674I 0.99192 + 2.87831I
u = 0.165244 0.479278I
a = 1.83465 + 0.61814I
b = 0.570372 0.472484I
0.02049 + 1.94674I 0.99192 2.87831I
u = 0.242112 + 0.308667I
a = 0.941920 0.135172I
b = 0.224155 0.681318I
0.235696 + 1.266250I 2.12322 5.45165I
u = 0.242112 0.308667I
a = 0.941920 + 0.135172I
b = 0.224155 + 0.681318I
0.235696 1.266250I 2.12322 + 5.45165I
8
II.
I
u
2
= h−6a
3
u 29a
2
u + · · · 23a 28, 2a
3
u 2a
2
u + · · · 6a 3, u
2
u +1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
1
=
1
0
a
11
=
a
0.0983607a
3
u + 0.475410a
2
u + ··· + 0.377049a + 0.459016
a
10
=
0.0983607a
3
u 0.475410a
2
u + ··· + 0.622951a 0.459016
0.0983607a
3
u + 0.475410a
2
u + ··· + 0.377049a + 0.459016
a
7
=
1.18033a
3
u 0.295082a
2
u + ··· + 0.524590a 0.491803
0.786885a
3
u + 0.196721a
2
u + ··· + 0.983607a + 2.32787
a
9
=
0.196721a
3
u + 0.950820a
2
u + ··· + 0.754098a + 0.918033
1.44262a
3
u 1.63934a
2
u + ··· 0.196721a + 0.934426
a
4
=
1
u 1
a
8
=
0.196721a
3
u + 0.950820a
2
u + ··· + 0.754098a + 0.918033
1.44262a
3
u 1.63934a
2
u + ··· 0.196721a + 0.934426
a
12
=
0.393443a
3
u 0.0983607a
2
u + ··· + 1.50820a 0.163934
0.786885a
3
u + 0.196721a
2
u + ··· + 0.983607a + 2.32787
(ii) Obstruction class = 1
(iii) Cusp Shapes =
70
61
a
3
u
188
61
a
3
48
61
a
2
u
136
61
a
2
56
61
au +
248
61
a
344
61
u +
347
61
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
4
, c
8
u
8
c
6
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
7
(u
4
+ u
3
+ u
2
+ 1)
2
c
9
, c
10
, c
12
(u
4
u
3
+ 3u
2
2u + 1)
2
c
11
(u
4
u
3
+ u
2
+ 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
4
c
4
, c
8
y
8
c
6
, c
9
, c
10
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
7
, c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.334772 + 0.902624I
b = 0.395123 + 0.506844I
0.211005 + 0.614778I 2.28131 + 2.56093I
u = 0.500000 + 0.866025I
a = 1.118210 0.202000I
b = 0.10488 + 1.55249I
6.79074 1.13408I 0.84181 3.00733I
u = 0.500000 + 0.866025I
a = 1.212650 0.218250I
b = 0.395123 0.506844I
0.21101 + 3.44499I 0.06504 6.27596I
u = 0.500000 + 0.866025I
a = 1.57079 + 0.38365I
b = 0.10488 1.55249I
6.79074 + 5.19385I 4.18309 10.81465I
u = 0.500000 0.866025I
a = 0.334772 0.902624I
b = 0.395123 0.506844I
0.211005 0.614778I 2.28131 2.56093I
u = 0.500000 0.866025I
a = 1.118210 + 0.202000I
b = 0.10488 1.55249I
6.79074 + 1.13408I 0.84181 + 3.00733I
u = 0.500000 0.866025I
a = 1.212650 + 0.218250I
b = 0.395123 + 0.506844I
0.21101 3.44499I 0.06504 + 6.27596I
u = 0.500000 0.866025I
a = 1.57079 0.38365I
b = 0.10488 + 1.55249I
6.79074 5.19385I 4.18309 + 10.81465I
12
III.
I
u
3
= h26u
3
a
2
12u
3
a+· · ·41a+30, 2u
3
a
2
2u
3
a+· · ·5a+2, u
4
+u
3
+u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
2
+ 1
a
11
=
a
0.366197a
2
u
3
+ 0.169014au
3
+ ··· + 0.577465a 0.422535
a
10
=
0.366197a
2
u
3
0.169014au
3
+ ··· + 0.422535a + 0.422535
0.366197a
2
u
3
+ 0.169014au
3
+ ··· + 0.577465a 0.422535
a
7
=
0.267606a
2
u
3
+ 0.661972au
3
+ ··· 1.15493a + 0.845070
0.239437a
2
u
3
+ 0.197183au
3
+ ··· + 0.507042a + 0.507042
a
9
=
u
2
+ 1
u
3
u
2
1
a
4
=
u
3
u
3
+ u
a
8
=
1
0
a
12
=
0.366197a
2
u
3
+ 0.169014au
3
+ ··· 0.422535a 0.422535
0.366197a
2
u
3
0.169014au
3
+ ··· 0.577465a + 0.422535
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
3
c
2
, c
5
(u
4
+ u
3
+ u
2
+ 1)
3
c
3
(u
4
u
3
+ 5u
2
+ u + 2)
3
c
6
, c
7
, c
9
c
10
, c
11
u
12
+ 4u
10
+ ··· 2u + 1
c
12
u
12
8u
11
+ ··· 10u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
3
c
2
, c
5
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
3
c
3
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
3
c
6
, c
7
, c
9
c
10
, c
11
y
12
+ 8y
11
+ ··· + 10y + 1
c
12
y
12
8y
11
+ ··· + 2y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.266204 0.424111I
b = 0.202218 0.425275I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.351808 + 0.720342I
a = 1.61961 0.46490I
b = 0.169110 0.735861I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.351808 + 0.720342I
a = 0.70433 3.80711I
b = 0.033108 + 1.161140I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.351808 0.720342I
a = 0.266204 + 0.424111I
b = 0.202218 + 0.425275I
0.21101 1.41510I 1.82674 + 4.90874I
u = 0.351808 0.720342I
a = 1.61961 + 0.46490I
b = 0.169110 + 0.735861I
0.21101 1.41510I 1.82674 + 4.90874I
u = 0.351808 0.720342I
a = 0.70433 + 3.80711I
b = 0.033108 1.161140I
0.21101 1.41510I 1.82674 + 4.90874I
u = 0.851808 + 0.911292I
a = 1.140580 0.606578I
b = 1.096690 + 0.070743I
6.79074 3.16396I 1.82674 + 2.56480I
u = 0.851808 + 0.911292I
a = 0.220330 + 0.512696I
b = 0.59056 + 1.34306I
6.79074 3.16396I 1.82674 + 2.56480I
u = 0.851808 + 0.911292I
a = 1.73877 + 0.20498I
b = 0.50613 1.41380I
6.79074 3.16396I 1.82674 + 2.56480I
u = 0.851808 0.911292I
a = 1.140580 + 0.606578I
b = 1.096690 0.070743I
6.79074 + 3.16396I 1.82674 2.56480I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.851808 0.911292I
a = 0.220330 0.512696I
b = 0.59056 1.34306I
6.79074 + 3.16396I 1.82674 2.56480I
u = 0.851808 0.911292I
a = 1.73877 0.20498I
b = 0.50613 + 1.41380I
6.79074 + 3.16396I 1.82674 2.56480I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
3
· (u
36
+ 10u
35
+ ··· + 255u + 16)
c
2
((u
2
+ u + 1)
4
)(u
4
+ u
3
+ u
2
+ 1)
3
(u
36
+ 2u
35
+ ··· 3u + 4)
c
3
(u
2
u + 1)
4
(u
4
u
3
+ 5u
2
+ u + 2)
3
· (u
36
2u
35
+ ··· + 110445u + 62564)
c
4
, c
8
u
8
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
3
(u
36
2u
35
+ ··· 3584u + 2048)
c
5
((u
2
u + 1)
4
)(u
4
+ u
3
+ u
2
+ 1)
3
(u
36
+ 2u
35
+ ··· 3u + 4)
c
6
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
12
+ 4u
10
+ ··· 2u + 1)
· (u
36
+ 3u
35
+ ··· + 4u + 1)
c
7
((u
4
+ u
3
+ u
2
+ 1)
2
)(u
12
+ 4u
10
+ ··· 2u + 1)(u
36
+ 3u
35
+ ··· + 2u + 1)
c
9
, c
10
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
12
+ 4u
10
+ ··· 2u + 1)
· (u
36
+ 3u
35
+ ··· + 4u + 1)
c
11
((u
4
u
3
+ u
2
+ 1)
2
)(u
12
+ 4u
10
+ ··· 2u + 1)(u
36
+ 3u
35
+ ··· + 2u + 1)
c
12
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
12
8u
11
+ ··· 10u + 1)
· (u
36
23u
35
+ ··· 6u + 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
3
· (y
36
+ 34y
35
+ ··· + 19807y + 256)
c
2
, c
5
(y
2
+ y + 1)
4
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
3
· (y
36
+ 10y
35
+ ··· + 255y + 16)
c
3
(y
2
+ y + 1)
4
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
3
· (y
36
+ 58y
35
+ ··· + 87628895247y + 3914254096)
c
4
, c
8
y
8
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
3
· (y
36
+ 30y
35
+ ··· + 13893632y + 4194304)
c
6
, c
9
, c
10
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
12
+ 8y
11
+ ··· + 10y + 1)
· (y
36
+ 27y
35
+ ··· + 6y + 1)
c
7
, c
11
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
)(y
12
+ 8y
11
+ ··· + 10y + 1)
· (y
36
+ 23y
35
+ ··· + 6y + 1)
c
12
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
12
8y
11
+ ··· + 2y + 1)
· (y
36
17y
35
+ ··· + 6y + 1)
19