12n
0050
(K12n
0050
)
A knot diagram
1
Linearized knot diagam
3 5 6 10 2 11 10 12 5 7 1 8
Solving Sequence
6,11 2,7
5 3 1 10 8 4 12 9
c
6
c
5
c
2
c
1
c
10
c
7
c
4
c
12
c
8
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.86448 × 10
23
u
41
4.54607 × 10
23
u
40
+ ··· + 2.14051 × 10
24
b 1.33994 × 10
24
,
1.55777 × 10
24
u
41
3.49226 × 10
24
u
40
+ ··· + 4.28103 × 10
24
a 8.66921 × 10
24
, u
42
3u
41
+ ··· 4u + 1i
I
u
2
= hu
2
a au + u
2
+ b u, 2u
3
a 4u
2
a 5u
3
+ 4a
2
+ 6au + 6u
2
2a 13u + 15, u
4
u
3
+ 3u
2
2u + 1i
I
u
3
= h−u
6
2u
4
2u
3
u
2
+ b 2u, u
6
3u
4
2u
3
2u
2
+ a 4u 1,
u
15
+ 5u
13
+ 5u
12
+ 10u
11
+ 20u
10
+ 18u
9
+ 30u
8
+ 29u
7
+ 23u
6
+ 25u
5
+ 11u
4
+ 7u
3
+ 3u
2
u + 1i
* 3 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.86 × 10
23
u
41
4.55 × 10
23
u
40
+ · · · + 2.14 × 10
24
b 1.34 × 10
24
, 1.56 ×
10
24
u
41
3.49×10
24
u
40
+· · ·+4.28×10
24
a8.67×10
24
, u
42
3u
41
+· · ·4u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
0.363877u
41
+ 0.815753u
40
+ ··· 0.334201u + 2.02503
0.0871043u
41
+ 0.212382u
40
+ ··· 0.482611u + 0.625989
a
7
=
1
u
2
a
5
=
0.659564u
41
+ 1.39975u
40
+ ··· + 0.0845241u + 0.435332
0.0702325u
41
+ 0.143960u
40
+ ··· 0.391861u 0.363693
a
3
=
0.574443u
41
+ 1.03501u
40
+ ··· + 1.04901u 0.509224
0.0313582u
41
0.169378u
40
+ ··· + 0.191274u 0.637085
a
1
=
0.545703u
41
1.87495u
40
+ ··· + 6.14055u 3.12407
0.0705453u
41
0.437164u
40
+ ··· + 2.10999u 0.698937
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.605801u
41
+ 1.20439u
40
+ ··· + 0.857736u + 0.127861
0.0313582u
41
0.169378u
40
+ ··· + 0.191274u 0.637085
a
12
=
0.112025u
41
0.738600u
40
+ ··· + 1.78402u 2.01029
0.179156u
41
+ 0.123997u
40
+ ··· + 1.38787u 0.296413
a
9
=
0.711251u
41
1.94978u
40
+ ··· + 4.85792u 0.210599
0.0109483u
41
+ 0.102515u
40
+ ··· + 0.549153u + 0.291182
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8819869146154630149250287
8562054330498891123064064
u
41
6951105346810345728611581
2140513582624722780766016
u
40
+ ···
9809601898657334062772699
8562054330498891123064064
u
77878813575983057100937417
8562054330498891123064064
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
42
+ 22u
41
+ ··· + 383u + 16
c
2
, c
5
u
42
+ 2u
41
+ ··· 3u + 4
c
3
u
42
2u
41
+ ··· 23400u + 3104
c
4
, c
9
u
42
+ 2u
41
+ ··· + 3584u + 2048
c
6
, c
7
, c
10
u
42
3u
41
+ ··· 4u + 1
c
8
, c
12
u
42
3u
41
+ ··· 2u + 1
c
11
u
42
+ 23u
41
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
42
2y
41
+ ··· + 33759y + 256
c
2
, c
5
y
42
+ 22y
41
+ ··· + 383y + 16
c
3
y
42
26y
41
+ ··· + 359975104y + 9634816
c
4
, c
9
y
42
30y
41
+ ··· 36438016y + 4194304
c
6
, c
7
, c
10
y
42
+ 35y
41
+ ··· + 6y + 1
c
8
, c
12
y
42
+ 23y
41
+ ··· + 6y + 1
c
11
y
42
5y
41
+ ··· 54y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.027970 + 0.100105I
a = 0.24960 + 1.85629I
b = 0.546190 + 1.233220I
9.37503 10.09150I 8.44713 + 6.42657I
u = 1.027970 0.100105I
a = 0.24960 1.85629I
b = 0.546190 1.233220I
9.37503 + 10.09150I 8.44713 6.42657I
u = 0.929724 + 0.138462I
a = 0.54776 + 2.00727I
b = 0.357906 + 1.293250I
10.74190 + 0.44052I 10.40215 + 0.18999I
u = 0.929724 0.138462I
a = 0.54776 2.00727I
b = 0.357906 1.293250I
10.74190 0.44052I 10.40215 0.18999I
u = 0.914941 + 0.045259I
a = 0.416878 0.222543I
b = 0.915244 0.158700I
6.11647 4.80305I 6.31453 + 3.22976I
u = 0.914941 0.045259I
a = 0.416878 + 0.222543I
b = 0.915244 + 0.158700I
6.11647 + 4.80305I 6.31453 3.22976I
u = 0.176790 + 1.089910I
a = 1.33651 1.33318I
b = 0.552991 1.072730I
1.83107 3.60410I 1.23384 + 2.84738I
u = 0.176790 1.089910I
a = 1.33651 + 1.33318I
b = 0.552991 + 1.072730I
1.83107 + 3.60410I 1.23384 2.84738I
u = 0.638546 + 0.536386I
a = 1.17338 1.37011I
b = 0.089750 0.808861I
1.04750 + 2.07664I 7.01132 2.89392I
u = 0.638546 0.536386I
a = 1.17338 + 1.37011I
b = 0.089750 + 0.808861I
1.04750 2.07664I 7.01132 + 2.89392I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.257246 + 1.141800I
a = 0.74697 + 1.25063I
b = 0.48378 + 1.32908I
0.81918 + 6.49392I 4.00000 8.90623I
u = 0.257246 1.141800I
a = 0.74697 1.25063I
b = 0.48378 1.32908I
0.81918 6.49392I 4.00000 + 8.90623I
u = 0.051623 + 1.181420I
a = 0.529834 0.226212I
b = 0.820994 + 0.618988I
3.71536 + 1.69010I 3.26218 1.55976I
u = 0.051623 1.181420I
a = 0.529834 + 0.226212I
b = 0.820994 0.618988I
3.71536 1.69010I 3.26218 + 1.55976I
u = 0.118844 + 1.181270I
a = 0.851838 0.430624I
b = 0.891940 0.979743I
2.63448 4.63960I 0. + 8.16254I
u = 0.118844 1.181270I
a = 0.851838 + 0.430624I
b = 0.891940 + 0.979743I
2.63448 + 4.63960I 0. 8.16254I
u = 0.023170 + 1.204780I
a = 0.160324 0.092419I
b = 0.914501 + 0.286896I
3.99481 + 1.55693I 4.40114 3.96530I
u = 0.023170 1.204780I
a = 0.160324 + 0.092419I
b = 0.914501 0.286896I
3.99481 1.55693I 4.40114 + 3.96530I
u = 0.487771 + 1.186180I
a = 0.360345 1.006100I
b = 0.229714 1.369840I
7.52698 5.48459I 0
u = 0.487771 1.186180I
a = 0.360345 + 1.006100I
b = 0.229714 + 1.369840I
7.52698 + 5.48459I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.579810 + 1.160310I
a = 0.178403 + 0.945878I
b = 0.304232 + 1.178570I
2.78929 + 1.17087I 0
u = 0.579810 1.160310I
a = 0.178403 0.945878I
b = 0.304232 1.178570I
2.78929 1.17087I 0
u = 0.404098 + 1.316080I
a = 0.296578 0.436654I
b = 0.825719 + 0.274258I
1.73633 + 4.52361I 0
u = 0.404098 1.316080I
a = 0.296578 + 0.436654I
b = 0.825719 0.274258I
1.73633 4.52361I 0
u = 0.438573 + 1.326070I
a = 0.146351 + 0.500553I
b = 0.991101 0.284626I
1.83637 9.65354I 0
u = 0.438573 1.326070I
a = 0.146351 0.500553I
b = 0.991101 + 0.284626I
1.83637 + 9.65354I 0
u = 0.48276 + 1.38315I
a = 1.29723 + 1.22335I
b = 0.619520 + 1.226280I
4.7316 15.4661I 0
u = 0.48276 1.38315I
a = 1.29723 1.22335I
b = 0.619520 1.226280I
4.7316 + 15.4661I 0
u = 0.518309 + 0.081810I
a = 1.62251 2.04492I
b = 0.313840 1.152440I
3.86435 3.51413I 10.49218 + 3.82170I
u = 0.518309 0.081810I
a = 1.62251 + 2.04492I
b = 0.313840 + 1.152440I
3.86435 + 3.51413I 10.49218 3.82170I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.46833 + 1.40959I
a = 1.28786 1.10744I
b = 0.562936 1.175720I
0.96374 + 9.68671I 0
u = 0.46833 1.40959I
a = 1.28786 + 1.10744I
b = 0.562936 + 1.175720I
0.96374 9.68671I 0
u = 0.256255 + 0.421847I
a = 1.193230 + 0.520583I
b = 0.123371 + 0.236807I
0.427988 + 1.171450I 4.97387 5.79413I
u = 0.256255 0.421847I
a = 1.193230 0.520583I
b = 0.123371 0.236807I
0.427988 1.171450I 4.97387 + 5.79413I
u = 0.05066 + 1.56885I
a = 0.821923 + 0.217869I
b = 0.377724 + 0.762011I
6.69834 + 1.66397I 0
u = 0.05066 1.56885I
a = 0.821923 0.217869I
b = 0.377724 0.762011I
6.69834 1.66397I 0
u = 0.040527 + 0.421390I
a = 2.04288 + 1.54331I
b = 0.455512 + 0.708227I
0.32690 + 1.38361I 5.63624 5.27111I
u = 0.040527 0.421390I
a = 2.04288 1.54331I
b = 0.455512 0.708227I
0.32690 1.38361I 5.63624 + 5.27111I
u = 0.14166 + 1.59539I
a = 1.013790 0.413700I
b = 0.360591 0.879206I
6.34972 + 4.89959I 0
u = 0.14166 1.59539I
a = 1.013790 + 0.413700I
b = 0.360591 + 0.879206I
6.34972 4.89959I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.271803 + 0.171548I
a = 2.13801 1.84885I
b = 0.623695 0.921062I
1.06689 3.17946I 11.00684 + 2.84027I
u = 0.271803 0.171548I
a = 2.13801 + 1.84885I
b = 0.623695 + 0.921062I
1.06689 + 3.17946I 11.00684 2.84027I
9
II.
I
u
2
= hu
2
a au + u
2
+ b u, 2u
3
a 5u
3
+ · · · 2a + 15, u
4
u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
a
u
2
a + au u
2
+ u
a
7
=
1
u
2
a
5
=
u
2
a +
1
2
u
3
au + a +
1
2
u
1
2
u
2
a + au u
2
+ u 1
a
3
=
1
2
u
3
u
2
+ a +
3
2
u
3
2
u
2
a + au u
2
+ u 1
a
1
=
1
0
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
4
=
u
2
a +
1
2
u
3
au + a +
1
2
u
1
2
u
2
a + au u
2
+ u 1
a
12
=
u
u
a
9
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
3
a + 11u
2
a +
7
2
u
3
15
2
au + 5u
2
+
5
2
a +
11
2
u
7
2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
4
, c
9
u
8
c
6
, c
7
, c
11
(u
4
u
3
+ 3u
2
2u + 1)
2
c
8
(u
4
u
3
+ u
2
+ 1)
2
c
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
12
(u
4
+ u
3
+ u
2
+ 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
4
c
4
, c
9
y
8
c
6
, c
7
, c
10
c
11
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
8
, c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.32193 + 1.46300I
b = 0.500000 + 0.866025I
0.211005 + 0.614778I 3.71851 + 3.54153I
u = 0.395123 + 0.506844I
a = 0.39397 1.87632I
b = 0.500000 0.866025I
0.21101 3.44499I 1.37216 + 7.25656I
u = 0.395123 0.506844I
a = 0.32193 1.46300I
b = 0.500000 0.866025I
0.211005 0.614778I 3.71851 3.54153I
u = 0.395123 0.506844I
a = 0.39397 + 1.87632I
b = 0.500000 + 0.866025I
0.21101 + 3.44499I 1.37216 7.25656I
u = 0.10488 + 1.55249I
a = 0.975620 0.357786I
b = 0.500000 0.866025I
6.79074 5.19385I 4.49529 + 8.13693I
u = 0.10488 + 1.55249I
a = 0.702338 + 0.200007I
b = 0.500000 + 0.866025I
6.79074 1.13408I 0.52961 5.68505I
u = 0.10488 1.55249I
a = 0.975620 + 0.357786I
b = 0.500000 + 0.866025I
6.79074 + 5.19385I 4.49529 8.13693I
u = 0.10488 1.55249I
a = 0.702338 0.200007I
b = 0.500000 0.866025I
6.79074 + 1.13408I 0.52961 + 5.68505I
13
III. I
u
3
= h−u
6
2u
4
2u
3
u
2
+ b 2u, u
6
3u
4
2u
3
2u
2
+ a 4u
1, u
15
+ 5u
13
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
u
6
+ 3u
4
+ 2u
3
+ 2u
2
+ 4u + 1
u
6
+ 2u
4
+ 2u
3
+ u
2
+ 2u
a
7
=
1
u
2
a
5
=
u
12
+ 5u
10
+ ··· + 2u + 1
u
12
+ 4u
10
+ 4u
9
+ 6u
8
+ 12u
7
+ 8u
6
+ 12u
5
+ 9u
4
+ 4u
3
+ 4u
2
a
3
=
u
13
+ 4u
11
+ ··· + 6u
2
+ 5u
u
12
4u
10
3u
9
6u
8
9u
7
5u
6
9u
5
3u
4
u
3
u
2
+ 2u 1
a
1
=
u
u
3
+ u
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
13
+ u
12
+ ··· + 3u + 1
u
12
4u
10
3u
9
6u
8
9u
7
5u
6
9u
5
3u
4
u
3
u
2
+ 2u 1
a
12
=
u
3
u
5
u
3
+ u
a
9
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
12u
7
12u
6
12u
5
24u
4
12u
3
12u
2
8u 2
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
c
2
, c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
c
3
, c
4
, c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
c
6
, c
7
, c
8
c
10
, c
12
u
15
+ 5u
13
+ ··· u + 1
c
11
u
15
+ 10u
14
+ ··· 5u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
c
2
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
c
3
, c
4
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
c
6
, c
7
, c
8
c
10
, c
12
y
15
+ 10y
14
+ ··· 5y 1
c
11
y
15
10y
14
+ ··· 65y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.009180 + 0.154259I
a = 0.41296 1.82234I
b = 0.455697 1.200150I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.009180 0.154259I
a = 0.41296 + 1.82234I
b = 0.455697 + 1.200150I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.191814 + 0.839165I
a = 0.62987 + 2.60849I
b = 0.339110 + 0.822375I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.191814 0.839165I
a = 0.62987 2.60849I
b = 0.339110 0.822375I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.855893
a = 0.209424
b = 0.766826
2.40108 3.48110
u = 0.070375 + 1.145600I
a = 1.57432 + 1.72920I
b = 0.339110 0.822375I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.070375 1.145600I
a = 1.57432 1.72920I
b = 0.339110 + 0.822375I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.427947 + 1.244760I
a = 0.454474 + 0.643686I
b = 0.766826
2.40108 3.48114 + 0.I
u = 0.427947 1.244760I
a = 0.454474 0.643686I
b = 0.766826
2.40108 3.48114 + 0.I
u = 0.592752 + 1.247160I
a = 0.210506 0.787763I
b = 0.455697 1.200150I
5.87256 + 4.40083I 6.74431 3.49859I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.592752 1.247160I
a = 0.210506 + 0.787763I
b = 0.455697 + 1.200150I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.41642 + 1.40142I
a = 1.43045 + 0.99035I
b = 0.455697 + 1.200150I
5.87256 4.40083I 6.74431 + 3.49859I
u = 0.41642 1.40142I
a = 1.43045 0.99035I
b = 0.455697 1.200150I
5.87256 + 4.40083I 6.74431 3.49859I
u = 0.262189 + 0.306431I
a = 1.81314 + 1.58784I
b = 0.339110 + 0.822375I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.262189 0.306431I
a = 1.81314 1.58784I
b = 0.339110 0.822375I
0.32910 1.53058I 2.51511 + 4.43065I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
· (u
42
+ 22u
41
+ ··· + 383u + 16)
c
2
((u
2
+ u + 1)
4
)(u
5
+ u
4
+ ··· + u + 1)
3
(u
42
+ 2u
41
+ ··· 3u + 4)
c
3
(u
2
u + 1)
4
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
· (u
42
2u
41
+ ··· 23400u + 3104)
c
4
, c
9
u
8
(u
5
u
4
+ ··· + u + 1)
3
(u
42
+ 2u
41
+ ··· + 3584u + 2048)
c
5
((u
2
u + 1)
4
)(u
5
+ u
4
+ ··· + u + 1)
3
(u
42
+ 2u
41
+ ··· 3u + 4)
c
6
, c
7
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
15
+ 5u
13
+ ··· u + 1)
· (u
42
3u
41
+ ··· 4u + 1)
c
8
((u
4
u
3
+ u
2
+ 1)
2
)(u
15
+ 5u
13
+ ··· u + 1)(u
42
3u
41
+ ··· 2u + 1)
c
10
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
15
+ 5u
13
+ ··· u + 1)
· (u
42
3u
41
+ ··· 4u + 1)
c
11
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
15
+ 10u
14
+ ··· 5u 1)
· (u
42
+ 23u
41
+ ··· + 6u + 1)
c
12
((u
4
+ u
3
+ u
2
+ 1)
2
)(u
15
+ 5u
13
+ ··· u + 1)(u
42
3u
41
+ ··· 2u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
· (y
42
2y
41
+ ··· + 33759y + 256)
c
2
, c
5
(y
2
+ y + 1)
4
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
· (y
42
+ 22y
41
+ ··· + 383y + 16)
c
3
(y
2
+ y + 1)
4
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
42
26y
41
+ ··· + 359975104y + 9634816)
c
4
, c
9
y
8
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
42
30y
41
+ ··· 36438016y + 4194304)
c
6
, c
7
, c
10
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
15
+ 10y
14
+ ··· 5y 1)
· (y
42
+ 35y
41
+ ··· + 6y + 1)
c
8
, c
12
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
)(y
15
+ 10y
14
+ ··· 5y 1)
· (y
42
+ 23y
41
+ ··· + 6y + 1)
c
11
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
15
10y
14
+ ··· 65y 1)
· (y
42
5y
41
+ ··· 54y + 1)
20