12n
0052
(K12n
0052
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 10 12 4 7 6 1 7
Solving Sequence
2,6
5 3 4
1,11
10 7 9 8 12
c
5
c
2
c
3
c
1
c
10
c
6
c
9
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−31828697846u
32
+ 114828956540u
31
+ ··· + 560421961026b + 532030527306,
197273519317u
32
+ 385887384126u
31
+ ··· + 1120843922052a + 266870259643,
u
33
2u
32
+ ··· + 5u + 4i
I
u
2
= h−u
19
a + 2u
19
+ ··· + 2a + 1, 2u
19
+ 3u
18
+ ··· 4a + 3, u
20
u
19
+ ··· 2u + 1i
I
u
3
= h−u
4
a 2u
2
a + u
3
+ au + b a + u 1, 2u
4
a + 4u
3
a + 6u
2
a 3u
3
+ a
2
+ 4au 5u
2
+ 2a 8u 4,
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
I
u
4
= hb + 1, 2a 2u + 3, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.18×10
10
u
32
+1.15×10
11
u
31
+· · ·+5.60×10
11
b+5.32×10
11
, 1.97×
10
11
u
32
+3.86×10
11
u
31
+· · ·+1.12×10
12
a+2.67×10
11
, u
33
2u
32
+· · ·+5u+4i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
11
=
0.176004u
32
0.344283u
31
+ ··· 1.32385u 0.238098
0.0567942u
32
0.204897u
31
+ ··· 0.869757u 0.949339
a
10
=
0.119210u
32
0.139386u
31
+ ··· 0.454097u + 0.711242
0.0567942u
32
0.204897u
31
+ ··· 0.869757u 0.949339
a
7
=
0.207329u
32
0.154336u
31
+ ··· 0.127694u + 1.18034
0.00997898u
32
0.246238u
31
+ ··· 1.25132u 0.881877
a
9
=
0.322990u
32
0.306718u
31
+ ··· + 0.284165u + 1.39874
0.0620557u
32
0.436306u
31
+ ··· 2.88278u 1.94300
a
8
=
0.442680u
32
0.385581u
31
+ ··· + 0.406459u + 1.30251
0.00301080u
32
0.502789u
31
+ ··· 2.70870u 1.78276
a
12
=
0.203780u
32
0.167332u
31
+ ··· + 0.738262u + 0.687499
0.00526157u
32
0.231409u
31
+ ··· 1.01302u 0.993665
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
299977318733
280210980513
u
32
1019459365581
373614640684
u
31
+ ···
12370860698239
1120843922052
u +
1142458947067
280210980513
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
33
+ 16u
32
+ ··· + 145u 16
c
2
, c
5
u
33
+ 2u
32
+ ··· + 5u 4
c
3
u
33
2u
32
+ ··· + 317u 292
c
4
, c
8
u
33
3u
32
+ ··· + 88u 32
c
6
, c
7
, c
9
c
10
, c
12
u
33
2u
32
+ ··· u 1
c
11
u
33
+ 8u
32
+ ··· + 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
33
+ 4y
32
+ ··· + 42945y 256
c
2
, c
5
y
33
+ 16y
32
+ ··· + 145y 16
c
3
y
33
8y
32
+ ··· + 1520193y 85264
c
4
, c
8
y
33
+ 15y
32
+ ··· 10048y 1024
c
6
, c
7
, c
9
c
10
, c
12
y
33
+ 8y
32
+ ··· + 3y 1
c
11
y
33
+ 32y
32
+ ··· + 43y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.245925 + 0.967546I
a = 0.251909 0.983582I
b = 0.187676 + 0.479329I
1.41636 2.05180I 2.48876 + 5.93206I
u = 0.245925 0.967546I
a = 0.251909 + 0.983582I
b = 0.187676 0.479329I
1.41636 + 2.05180I 2.48876 5.93206I
u = 0.575427 + 0.852009I
a = 0.942155 + 0.274666I
b = 0.340349 0.122054I
0.45731 2.27972I 1.08128 + 4.27119I
u = 0.575427 0.852009I
a = 0.942155 0.274666I
b = 0.340349 + 0.122054I
0.45731 + 2.27972I 1.08128 4.27119I
u = 0.812937 + 0.631708I
a = 1.47975 0.44818I
b = 0.743424 1.002600I
2.94313 7.42925I 5.70373 + 7.47980I
u = 0.812937 0.631708I
a = 1.47975 + 0.44818I
b = 0.743424 + 1.002600I
2.94313 + 7.42925I 5.70373 7.47980I
u = 0.409753 + 0.871693I
a = 1.12499 + 1.08600I
b = 1.204130 0.140549I
1.31683 + 1.72852I 4.93752 + 4.67154I
u = 0.409753 0.871693I
a = 1.12499 1.08600I
b = 1.204130 + 0.140549I
1.31683 1.72852I 4.93752 4.67154I
u = 0.867555 + 0.396268I
a = 1.30056 0.58396I
b = 0.737799 1.175390I
1.52939 11.12300I 4.95685 + 6.43500I
u = 0.867555 0.396268I
a = 1.30056 + 0.58396I
b = 0.737799 + 1.175390I
1.52939 + 11.12300I 4.95685 6.43500I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.686118 + 0.578359I
a = 1.88566 0.06922I
b = 0.982967 0.781621I
4.40316 + 1.88813I 8.98813 1.20865I
u = 0.686118 0.578359I
a = 1.88566 + 0.06922I
b = 0.982967 + 0.781621I
4.40316 1.88813I 8.98813 + 1.20865I
u = 0.864975 + 0.034660I
a = 0.331594 0.009701I
b = 0.305266 + 0.786195I
4.64239 + 1.30030I 4.70025 5.48240I
u = 0.864975 0.034660I
a = 0.331594 + 0.009701I
b = 0.305266 0.786195I
4.64239 1.30030I 4.70025 + 5.48240I
u = 0.783314 + 0.350967I
a = 1.325760 0.086765I
b = 0.755107 0.967847I
3.18749 + 4.30240I 7.11828 3.25713I
u = 0.783314 0.350967I
a = 1.325760 + 0.086765I
b = 0.755107 + 0.967847I
3.18749 4.30240I 7.11828 + 3.25713I
u = 0.240711 + 1.138690I
a = 0.218446 + 1.066860I
b = 0.589322 0.850975I
1.47063 + 1.54484I 2.00175 2.84762I
u = 0.240711 1.138690I
a = 0.218446 1.066860I
b = 0.589322 + 0.850975I
1.47063 1.54484I 2.00175 + 2.84762I
u = 0.591437 + 1.006810I
a = 0.445351 + 1.131670I
b = 1.117370 + 0.693565I
3.12726 + 3.05094I 6.17471 5.64978I
u = 0.591437 1.006810I
a = 0.445351 1.131670I
b = 1.117370 0.693565I
3.12726 3.05094I 6.17471 + 5.64978I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.698987 + 0.997819I
a = 0.090751 + 0.887560I
b = 0.721939 + 0.913335I
1.84788 + 1.79409I 4.29068 3.01350I
u = 0.698987 0.997819I
a = 0.090751 0.887560I
b = 0.721939 0.913335I
1.84788 1.79409I 4.29068 + 3.01350I
u = 0.130978 + 1.224260I
a = 0.086555 + 0.842104I
b = 0.639885 1.138090I
4.05878 8.31071I 0.77091 + 5.89193I
u = 0.130978 1.224260I
a = 0.086555 0.842104I
b = 0.639885 + 1.138090I
4.05878 + 8.31071I 0.77091 5.89193I
u = 0.582339 + 1.132530I
a = 1.72579 1.27163I
b = 0.702978 + 1.047320I
0.87531 9.44053I 3.45057 + 7.37353I
u = 0.582339 1.132530I
a = 1.72579 + 1.27163I
b = 0.702978 1.047320I
0.87531 + 9.44053I 3.45057 7.37353I
u = 0.625502 + 1.141600I
a = 2.00848 0.87462I
b = 0.73439 + 1.22624I
0.7160 + 16.6422I 2.25690 10.10185I
u = 0.625502 1.141600I
a = 2.00848 + 0.87462I
b = 0.73439 1.22624I
0.7160 16.6422I 2.25690 + 10.10185I
u = 0.428870 + 1.244810I
a = 0.598711 0.990983I
b = 0.322959 + 0.874255I
8.56638 + 5.85952I 0.43324 9.30798I
u = 0.428870 1.244810I
a = 0.598711 + 0.990983I
b = 0.322959 0.874255I
8.56638 5.85952I 0.43324 + 9.30798I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.472894 + 1.232170I
a = 0.522556 + 0.573461I
b = 0.226689 0.797235I
8.26141 + 3.47041I 2.59273 + 2.52733I
u = 0.472894 1.232170I
a = 0.522556 0.573461I
b = 0.226689 + 0.797235I
8.26141 3.47041I 2.59273 2.52733I
u = 0.276882
a = 0.692398
b = 0.466299
0.794015 12.6910
8
II. I
u
2
=
h−u
19
a+2u
19
+· · ·+2a+1, 2u
19
+3u
18
+· · ·4a+3, u
20
u
19
+· · ·2u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
11
=
a
u
19
a 2u
19
+ ··· 2a 1
a
10
=
u
19
a + 2u
19
+ ··· + 3a + 1
u
19
a 2u
19
+ ··· 2a 1
a
7
=
5u
19
a u
19
+ ··· 3a + 5
3u
19
a + u
19
+ ··· + 2a 1
a
9
=
u
13
2u
11
3u
9
2u
7
2u
5
2u
3
u
u
15
3u
13
6u
11
7u
9
6u
7
4u
5
2u
3
u
a
8
=
u
18
3u
16
6u
14
7u
12
7u
10
7u
8
6u
6
4u
4
u
2
1
u
19
+ u
18
+ ··· 2u + 1
a
12
=
4u
19
a 3u
19
+ ··· 2a 2
3u
19
a + u
19
+ ··· + a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
18
+ 4u
17
16u
16
+ 16u
15
36u
14
+ 40u
13
52u
12
+ 60u
11
56u
10
+ 64u
9
56u
8
+ 52u
7
48u
6
+ 40u
5
32u
4
+ 32u
3
12u
2
+ 12u 2
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
20
+ 9u
19
+ ··· + 2u + 1)
2
c
2
, c
5
(u
20
+ u
19
+ ··· + 2u + 1)
2
c
3
(u
20
u
19
+ ··· 4u + 1)
2
c
4
, c
8
(u
20
+ u
19
+ ··· + u
2
+ 1)
2
c
6
, c
7
, c
9
c
10
, c
12
u
40
+ 5u
39
+ ··· + 390u + 73
c
11
u
40
+ 19u
39
+ ··· + 61352u + 5329
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 5y
19
+ ··· + 10y + 1)
2
c
2
, c
5
(y
20
+ 9y
19
+ ··· + 2y + 1)
2
c
3
(y
20
+ y
19
+ ··· + 18y + 1)
2
c
4
, c
8
(y
20
+ 5y
19
+ ··· + 2y + 1)
2
c
6
, c
7
, c
9
c
10
, c
12
y
40
+ 19y
39
+ ··· + 61352y + 5329
c
11
y
40
+ 3y
39
+ ··· 70175632y + 28398241
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.781348 + 0.506112I
a = 1.170880 + 0.568217I
b = 0.805258 + 0.766657I
3.79920 1.55876I 8.11661 + 2.37917I
u = 0.781348 + 0.506112I
a = 1.325460 + 0.373843I
b = 0.821640 + 0.721695I
3.79920 1.55876I 8.11661 + 2.37917I
u = 0.781348 0.506112I
a = 1.170880 0.568217I
b = 0.805258 0.766657I
3.79920 + 1.55876I 8.11661 2.37917I
u = 0.781348 0.506112I
a = 1.325460 0.373843I
b = 0.821640 0.721695I
3.79920 + 1.55876I 8.11661 2.37917I
u = 0.487491 + 0.960535I
a = 1.02921 + 2.67375I
b = 0.088535 1.136560I
3.54419 2.59904I 5.59387 + 3.16627I
u = 0.487491 + 0.960535I
a = 3.93581 + 0.32426I
b = 0.199008 + 0.878501I
3.54419 2.59904I 5.59387 + 3.16627I
u = 0.487491 0.960535I
a = 1.02921 2.67375I
b = 0.088535 + 1.136560I
3.54419 + 2.59904I 5.59387 3.16627I
u = 0.487491 0.960535I
a = 3.93581 0.32426I
b = 0.199008 0.878501I
3.54419 + 2.59904I 5.59387 3.16627I
u = 0.795114 + 0.464423I
a = 1.22649 + 0.85458I
b = 0.828035 + 1.035210I
3.56254 4.70967I 7.63739 + 2.80351I
u = 0.795114 + 0.464423I
a = 1.57933 + 0.22784I
b = 1.029860 + 0.526311I
3.56254 4.70967I 7.63739 + 2.80351I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.795114 0.464423I
a = 1.22649 0.85458I
b = 0.828035 1.035210I
3.56254 + 4.70967I 7.63739 2.80351I
u = 0.795114 0.464423I
a = 1.57933 0.22784I
b = 1.029860 0.526311I
3.56254 + 4.70967I 7.63739 2.80351I
u = 0.331938 + 1.037100I
a = 0.385330 0.198340I
b = 0.566703 1.063780I
6.92523 + 0.74806I 3.88926 0.17223I
u = 0.331938 + 1.037100I
a = 1.54638 1.04589I
b = 0.261397 + 1.361890I
6.92523 + 0.74806I 3.88926 0.17223I
u = 0.331938 1.037100I
a = 0.385330 + 0.198340I
b = 0.566703 + 1.063780I
6.92523 0.74806I 3.88926 + 0.17223I
u = 0.331938 1.037100I
a = 1.54638 + 1.04589I
b = 0.261397 1.361890I
6.92523 0.74806I 3.88926 + 0.17223I
u = 0.044359 + 1.100970I
a = 0.144451 0.727954I
b = 0.783482 + 0.369003I
1.86599 2.89577I 1.68771 + 2.74717I
u = 0.044359 + 1.100970I
a = 0.120658 0.668355I
b = 0.575520 + 0.995344I
1.86599 2.89577I 1.68771 + 2.74717I
u = 0.044359 1.100970I
a = 0.144451 + 0.727954I
b = 0.783482 0.369003I
1.86599 + 2.89577I 1.68771 2.74717I
u = 0.044359 1.100970I
a = 0.120658 + 0.668355I
b = 0.575520 0.995344I
1.86599 + 2.89577I 1.68771 2.74717I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.502129 + 1.070060I
a = 1.196860 + 0.433804I
b = 0.02454 1.45386I
5.78161 + 6.06247I 0.39660 7.82928I
u = 0.502129 + 1.070060I
a = 1.81174 0.26469I
b = 0.753263 + 0.761883I
5.78161 + 6.06247I 0.39660 7.82928I
u = 0.502129 1.070060I
a = 1.196860 0.433804I
b = 0.02454 + 1.45386I
5.78161 6.06247I 0.39660 + 7.82928I
u = 0.502129 1.070060I
a = 1.81174 + 0.26469I
b = 0.753263 0.761883I
5.78161 6.06247I 0.39660 + 7.82928I
u = 0.455846 + 0.648892I
a = 1.182610 0.667439I
b = 0.000037 + 1.148130I
2.61010 1.37271I 7.12015 + 4.43993I
u = 0.455846 + 0.648892I
a = 0.69832 3.01113I
b = 0.000279 0.680563I
2.61010 1.37271I 7.12015 + 4.43993I
u = 0.455846 0.648892I
a = 1.182610 + 0.667439I
b = 0.000037 1.148130I
2.61010 + 1.37271I 7.12015 4.43993I
u = 0.455846 0.648892I
a = 0.69832 + 3.01113I
b = 0.000279 + 0.680563I
2.61010 + 1.37271I 7.12015 4.43993I
u = 0.628268 + 1.065390I
a = 0.062803 0.923190I
b = 0.801152 0.631202I
2.12977 3.75485I 5.74318 + 2.44199I
u = 0.628268 + 1.065390I
a = 1.69799 + 0.89596I
b = 0.734017 0.821832I
2.12977 3.75485I 5.74318 + 2.44199I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.628268 1.065390I
a = 0.062803 + 0.923190I
b = 0.801152 + 0.631202I
2.12977 + 3.75485I 5.74318 2.44199I
u = 0.628268 1.065390I
a = 1.69799 0.89596I
b = 0.734017 + 0.821832I
2.12977 + 3.75485I 5.74318 2.44199I
u = 0.621367 + 1.089770I
a = 0.450132 1.108290I
b = 1.111620 0.461350I
1.69596 + 10.03250I 4.83081 7.28178I
u = 0.621367 + 1.089770I
a = 1.94152 + 0.70857I
b = 0.838812 1.128460I
1.69596 + 10.03250I 4.83081 7.28178I
u = 0.621367 1.089770I
a = 0.450132 + 1.108290I
b = 1.111620 + 0.461350I
1.69596 10.03250I 4.83081 + 7.28178I
u = 0.621367 1.089770I
a = 1.94152 0.70857I
b = 0.838812 + 1.128460I
1.69596 10.03250I 4.83081 + 7.28178I
u = 0.558047 + 0.271580I
a = 0.714003 + 0.735342I
b = 0.041067 + 1.303980I
3.61982 1.83292I 3.55614 + 4.26331I
u = 0.558047 + 0.271580I
a = 1.61977 1.74347I
b = 0.508409 0.727923I
3.61982 1.83292I 3.55614 + 4.26331I
u = 0.558047 0.271580I
a = 0.714003 0.735342I
b = 0.041067 1.303980I
3.61982 + 1.83292I 3.55614 4.26331I
u = 0.558047 0.271580I
a = 1.61977 + 1.74347I
b = 0.508409 + 0.727923I
3.61982 + 1.83292I 3.55614 4.26331I
15
III. I
u
3
= h−u
4
a 2u
2
a + u
3
+ au + b a + u 1, 2u
4
a + 4u
3
a + · · · + 2a
4, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
1
=
u
3
u
4
u
3
u
2
1
a
11
=
a
u
4
a + 2u
2
a u
3
au + a u + 1
a
10
=
u
4
a 2u
2
a + u
3
+ au + u 1
u
4
a + 2u
2
a u
3
au + a u + 1
a
7
=
u
3
a + 2u
4
+ 3u
3
au + 6u
2
+ a + 4u + 2
1
a
9
=
u
4
a 2u
2
a + u
3
+ au a + u 1
0
a
8
=
u
4
a u
3
a u
2
a a 1
u
4
a u
4
3u
2
a + au 2u
2
2a + u 1
a
12
=
u
3
+ a
u
4
a u
4
+ 2u
2
a 2u
3
au u
2
+ a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
4u 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
2
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
3
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
4
, c
8
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
6
, c
7
, c
9
c
10
, c
12
(u
2
+ 1)
5
c
11
(u 1)
10
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
3
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
4
, c
8
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
c
6
, c
7
, c
9
c
10
, c
12
(y + 1)
10
c
11
(y 1)
10
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 2.33905 0.71839I
b = 1.000000I
3.61897 + 1.53058I 0.51511 4.43065I
u = 0.339110 + 0.822375I
a = 0.26050 3.57549I
b = 1.000000I
3.61897 + 1.53058I 0.51511 4.43065I
u = 0.339110 0.822375I
a = 2.33905 + 0.71839I
b = 1.000000I
3.61897 1.53058I 0.51511 + 4.43065I
u = 0.339110 0.822375I
a = 0.26050 + 3.57549I
b = 1.000000I
3.61897 1.53058I 0.51511 + 4.43065I
u = 0.766826
a = 0.674363 + 0.304077I
b = 1.000000I
5.69095 1.48110
u = 0.766826
a = 0.674363 0.304077I
b = 1.000000I
5.69095 1.48110
u = 0.455697 + 1.200150I
a = 0.265647 + 0.869899I
b = 1.000000I
9.16243 4.40083I 4.74431 + 3.49859I
u = 0.455697 + 1.200150I
a = 1.190830 0.577079I
b = 1.000000I
9.16243 4.40083I 4.74431 + 3.49859I
u = 0.455697 1.200150I
a = 0.265647 0.869899I
b = 1.000000I
9.16243 + 4.40083I 4.74431 3.49859I
u = 0.455697 1.200150I
a = 1.190830 + 0.577079I
b = 1.000000I
9.16243 + 4.40083I 4.74431 3.49859I
19
IV. I
u
4
= hb + 1, 2a 2u + 3, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
4
=
1
u 1
a
1
=
1
0
a
11
=
u
3
2
1
a
10
=
u
1
2
1
a
7
=
u +
1
2
1
a
9
=
2u
2
a
8
=
2u
2
a
12
=
u
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
31
4
u + 14
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
8
u
2
c
6
, c
7
, c
11
(u + 1)
2
c
9
, c
10
, c
12
(u 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
8
y
2
c
6
, c
7
, c
9
c
10
, c
11
, c
12
(y 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.000000 + 0.866025I
b = 1.00000
1.64493 + 2.02988I 10.12500 6.71170I
u = 0.500000 0.866025I
a = 1.000000 0.866025I
b = 1.00000
1.64493 2.02988I 10.12500 + 6.71170I
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
5
3u
4
+ ··· u + 1)
2
(u
20
+ 9u
19
+ ··· + 2u + 1)
2
· (u
33
+ 16u
32
+ ··· + 145u 16)
c
2
(u
2
+ u + 1)(u
5
u
4
+ ··· + u 1)
2
(u
20
+ u
19
+ ··· + 2u + 1)
2
· (u
33
+ 2u
32
+ ··· + 5u 4)
c
3
(u
2
u + 1)(u
5
+ u
4
+ ··· + u 1)
2
(u
20
u
19
+ ··· 4u + 1)
2
· (u
33
2u
32
+ ··· + 317u 292)
c
4
, c
8
u
2
(u
10
+ 5u
8
+ ··· u
2
+ 1)(u
20
+ u
19
+ ··· + u
2
+ 1)
2
· (u
33
3u
32
+ ··· + 88u 32)
c
5
(u
2
u + 1)(u
5
+ u
4
+ ··· + u + 1)
2
(u
20
+ u
19
+ ··· + 2u + 1)
2
· (u
33
+ 2u
32
+ ··· + 5u 4)
c
6
, c
7
((u + 1)
2
)(u
2
+ 1)
5
(u
33
2u
32
+ ··· u 1)
· (u
40
+ 5u
39
+ ··· + 390u + 73)
c
9
, c
10
, c
12
((u 1)
2
)(u
2
+ 1)
5
(u
33
2u
32
+ ··· u 1)
· (u
40
+ 5u
39
+ ··· + 390u + 73)
c
11
((u 1)
10
)(u + 1)
2
(u
33
+ 8u
32
+ ··· + 3u 1)
· (u
40
+ 19u
39
+ ··· + 61352u + 5329)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· ((y
20
+ 5y
19
+ ··· + 10y + 1)
2
)(y
33
+ 4y
32
+ ··· + 42945y 256)
c
2
, c
5
(y
2
+ y + 1)(y
5
+ 3y
4
+ ··· y 1)
2
(y
20
+ 9y
19
+ ··· + 2y + 1)
2
· (y
33
+ 16y
32
+ ··· + 145y 16)
c
3
(y
2
+ y + 1)(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· ((y
20
+ y
19
+ ··· + 18y + 1)
2
)(y
33
8y
32
+ ··· + 1520193y 85264)
c
4
, c
8
y
2
(y
5
+ 5y
4
+ ··· y + 1)
2
(y
20
+ 5y
19
+ ··· + 2y + 1)
2
· (y
33
+ 15y
32
+ ··· 10048y 1024)
c
6
, c
7
, c
9
c
10
, c
12
((y 1)
2
)(y + 1)
10
(y
33
+ 8y
32
+ ··· + 3y 1)
· (y
40
+ 19y
39
+ ··· + 61352y + 5329)
c
11
((y 1)
12
)(y
33
+ 32y
32
+ ··· + 43y 1)
· (y
40
+ 3y
39
+ ··· 70175632y + 28398241)
25