12n
0055
(K12n
0055
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 12 10 5 7 9 6 11
Solving Sequence
5,8 9,10 6,11
12 4 3 2 1 7
c
8
c
10
c
11
c
4
c
3
c
2
c
1
c
7
c
5
, c
6
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.43951 × 10
32
u
27
+ 3.79444 × 10
32
u
26
+ ··· + 9.42397 × 10
33
d + 5.95648 × 10
32
,
5.68907 × 10
31
u
27
1.81131 × 10
32
u
26
+ ··· + 1.88479 × 10
34
c 1.63326 × 10
34
,
7.06990 × 10
32
u
27
2.19194 × 10
33
u
26
+ ··· + 9.42397 × 10
33
b 2.89436 × 10
34
,
6.86736 × 10
32
u
27
+ 2.01828 × 10
33
u
26
+ ··· + 1.88479 × 10
34
a + 1.76377 × 10
34
,
u
28
3u
27
+ ··· 64u + 32i
I
u
2
= h−4182326921u
19
c 3076005459u
19
+ ··· + 29433713862c 28068851486,
49133842327u
19
c 33157787379u
19
+ ··· 204672432210c + 75288972938,
96297864u
19
+ 56397459u
18
+ ··· + 6762765143b + 683924131,
4877710595u
19
+ 3159804985u
18
+ ··· + 108204242288a + 50023322678,
u
20
+ u
19
+ ··· 8u 4i
I
v
1
= ha, d, c 1, b + 1, v
2
+ v + 1i
I
v
2
= ha, d 1, c + a 1, b + 1, v
2
+ v + 1i
I
v
3
= hc, d 1, b, a + 1, v + 1i
I
v
4
= hc, d 1, v
2
ba + v
2
b av + c v 1, b
2
v
2
bv + 1i
* 5 irreducible components of dim
C
= 0, with total 73 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I. I
u
1
= h−1.44 × 10
32
u
27
+ 3.79 × 10
32
u
26
+ · · · + 9.42 × 10
33
d + 5.96 ×
10
32
, 5.69 × 10
31
u
27
1.81 × 10
32
u
26
+ · · · + 1.88 × 10
34
c 1.63 × 10
34
, 7.07 ×
10
32
u
27
2.19 × 10
33
u
26
+ · · · + 9.42 × 10
33
b 2.89 × 10
34
, 6.87 × 10
32
u
27
+
2.02 × 10
33
u
26
+ · · · + 1.88 × 10
34
a + 1.76 × 10
34
, u
28
3u
27
+ · · · 64u + 32i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
0.00301840u
27
+ 0.00961014u
26
+ ··· 0.512168u + 0.866547
0.0152750u
27
0.0402637u
26
+ ··· + 1.56827u 0.0632056
a
6
=
0.0364356u
27
0.107082u
26
+ ··· + 4.89194u 0.935790
0.0750204u
27
+ 0.232591u
26
+ ··· 10.9778u + 3.07128
a
11
=
0.0188045u
27
+ 0.0531544u
26
+ ··· 2.21254u + 0.947510
0.00903337u
27
0.0298398u
26
+ ··· + 1.30721u 0.185253
a
12
=
0.0414237u
27
+ 0.136562u
26
+ ··· 6.59726u + 2.19775
0.0656027u
27
0.212991u
26
+ ··· + 10.4331u 2.93689
a
4
=
u
u
a
3
=
0.0439376u
27
0.115337u
26
+ ··· + 2.49821u + 0.486668
0.0676735u
27
+ 0.181595u
26
+ ··· 5.26458u 0.607411
a
2
=
0.0439376u
27
0.115337u
26
+ ··· + 2.49821u + 0.486668
0.0724643u
27
+ 0.187953u
26
+ ··· 5.61617u 1.13462
a
1
=
0.0385848u
27
0.125509u
26
+ ··· + 6.08587u 2.13549
0.0540378u
27
+ 0.180613u
26
+ ··· 9.11878u + 2.75912
a
7
=
0.00301840u
27
+ 0.00961014u
26
+ ··· 0.512168u + 0.866547
0.0157861u
27
+ 0.0435442u
26
+ ··· 1.70037u + 0.0809635
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.217306u
27
+ 0.532528u
26
+ ··· 20.8205u 2.69421
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 9u
27
+ ··· 56u + 16
c
2
, c
5
u
28
+ u
27
+ ··· + 8u + 4
c
3
u
28
u
27
+ ··· + 1736u + 1252
c
4
, c
8
u
28
3u
27
+ ··· 64u + 32
c
6
, c
7
, c
9
c
11
u
28
5u
27
+ ··· 3u + 1
c
10
, c
12
u
28
+ 9u
27
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 21y
27
+ ··· 6432y + 256
c
2
, c
5
y
28
+ 9y
27
+ ··· 56y + 16
c
3
y
28
+ 33y
27
+ ··· 17874936y + 1567504
c
4
, c
8
y
28
15y
27
+ ··· + 3072y + 1024
c
6
, c
7
, c
9
c
11
y
28
9y
27
+ ··· y + 1
c
10
, c
12
y
28
+ 31y
27
+ ··· + 39y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.387721 + 0.851263I
a = 0.858816 + 0.725565I
b = 1.19972 1.08591I
c = 0.488405 0.103669I
d = 0.959210 + 0.415864I
4.11180 3.97036I 11.03599 + 5.92521I
u = 0.387721 0.851263I
a = 0.858816 0.725565I
b = 1.19972 + 1.08591I
c = 0.488405 + 0.103669I
d = 0.959210 0.415864I
4.11180 + 3.97036I 11.03599 5.92521I
u = 0.048850 + 0.802561I
a = 0.029080 0.305052I
b = 0.065828 + 1.072140I
c = 0.570907 + 0.125829I
d = 0.670453 0.368171I
1.00554 + 1.45329I 3.70692 4.69342I
u = 0.048850 0.802561I
a = 0.029080 + 0.305052I
b = 0.065828 1.072140I
c = 0.570907 0.125829I
d = 0.670453 + 0.368171I
1.00554 1.45329I 3.70692 + 4.69342I
u = 1.195800 + 0.230197I
a = 1.033490 0.671818I
b = 0.010332 + 0.550938I
c = 0.28063 1.44187I
d = 0.869944 + 0.668233I
0.294538 + 1.243650I 3.92766 2.52803I
u = 1.195800 0.230197I
a = 1.033490 + 0.671818I
b = 0.010332 0.550938I
c = 0.28063 + 1.44187I
d = 0.869944 0.668233I
0.294538 1.243650I 3.92766 + 2.52803I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.512543 + 0.548760I
a = 0.511467 + 0.677219I
b = 0.399127 + 0.038680I
c = 0.810755 + 0.367303I
d = 0.023376 0.463629I
0.77284 + 1.38296I 2.12358 4.20585I
u = 0.512543 0.548760I
a = 0.511467 0.677219I
b = 0.399127 0.038680I
c = 0.810755 0.367303I
d = 0.023376 + 0.463629I
0.77284 1.38296I 2.12358 + 4.20585I
u = 1.240340 + 0.558685I
a = 0.781492 + 0.727914I
b = 0.253028 0.776710I
c = 0.19285 1.48947I
d = 1.085500 + 0.660311I
1.36469 + 9.34331I 7.27750 7.90351I
u = 1.240340 0.558685I
a = 0.781492 0.727914I
b = 0.253028 + 0.776710I
c = 0.19285 + 1.48947I
d = 1.085500 0.660311I
1.36469 9.34331I 7.27750 + 7.90351I
u = 0.306891 + 1.332240I
a = 0.939869 + 0.149572I
b = 0.419071 + 0.240287I
c = 0.448937 + 0.172706I
d = 0.940326 0.746445I
2.80790 + 2.77377I 2.82329 2.35775I
u = 0.306891 1.332240I
a = 0.939869 0.149572I
b = 0.419071 0.240287I
c = 0.448937 0.172706I
d = 0.940326 + 0.746445I
2.80790 2.77377I 2.82329 + 2.35775I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.599185 + 0.160658I
a = 1.46524 1.11304I
b = 0.040138 + 0.305232I
c = 1.279080 0.454824I
d = 0.305944 + 0.246798I
0.29820 + 2.58448I 1.60498 4.48843I
u = 0.599185 0.160658I
a = 1.46524 + 1.11304I
b = 0.040138 0.305232I
c = 1.279080 + 0.454824I
d = 0.305944 0.246798I
0.29820 2.58448I 1.60498 + 4.48843I
u = 0.449039 + 1.329150I
a = 1.106900 0.095973I
b = 0.328030 + 0.364080I
c = 0.437109 0.156367I
d = 1.028210 + 0.725550I
2.18074 8.77807I 4.21049 + 7.13120I
u = 0.449039 1.329150I
a = 1.106900 + 0.095973I
b = 0.328030 0.364080I
c = 0.437109 + 0.156367I
d = 1.028210 0.725550I
2.18074 + 8.77807I 4.21049 7.13120I
u = 1.36520 + 0.37405I
a = 0.546646 + 0.073706I
b = 0.536551 + 0.044814I
c = 0.022772 + 1.320010I
d = 0.986935 0.757343I
3.38586 5.92225I 1.05943 + 5.53498I
u = 1.36520 0.37405I
a = 0.546646 0.073706I
b = 0.536551 0.044814I
c = 0.022772 1.320010I
d = 0.986935 + 0.757343I
3.38586 + 5.92225I 1.05943 5.53498I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.128781 + 0.527754I
a = 1.29102 + 1.56415I
b = 2.31393 3.07959I
c = 0.536628 0.033094I
d = 0.856428 + 0.114486I
2.91457 + 1.71407I 11.28016 2.34859I
u = 0.128781 0.527754I
a = 1.29102 1.56415I
b = 2.31393 + 3.07959I
c = 0.536628 + 0.033094I
d = 0.856428 0.114486I
2.91457 1.71407I 11.28016 + 2.34859I
u = 1.36013 + 0.80195I
a = 0.214279 + 1.068830I
b = 0.00712 2.44927I
c = 0.423558 1.271240I
d = 1.23591 + 0.70803I
5.1047 + 16.3284I 4.49305 9.50798I
u = 1.36013 0.80195I
a = 0.214279 1.068830I
b = 0.00712 + 2.44927I
c = 0.423558 + 1.271240I
d = 1.23591 0.70803I
5.1047 16.3284I 4.49305 + 9.50798I
u = 1.41454 + 0.73498I
a = 0.133893 0.804174I
b = 0.47661 + 2.09588I
c = 0.342095 + 1.249650I
d = 1.20379 0.74444I
6.34910 10.12380I 2.60535 + 5.05088I
u = 1.41454 0.73498I
a = 0.133893 + 0.804174I
b = 0.47661 2.09588I
c = 0.342095 1.249650I
d = 1.20379 + 0.74444I
6.34910 + 10.12380I 2.60535 5.05088I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.57578 + 0.34473I
a = 0.069527 + 1.019780I
b = 0.22695 2.42039I
c = 0.317772 + 0.829753I
d = 0.597487 1.051030I
9.40632 + 3.24641I 0.187126 1.202849I
u = 1.57578 0.34473I
a = 0.069527 1.019780I
b = 0.22695 + 2.42039I
c = 0.317772 0.829753I
d = 0.597487 + 1.051030I
9.40632 3.24641I 0.187126 + 1.202849I
u = 1.61547 + 0.19947I
a = 0.052706 0.927660I
b = 0.39545 + 2.29628I
c = 0.265518 0.890486I
d = 0.692497 + 1.031290I
9.82407 + 3.16258I 0.50415 3.81889I
u = 1.61547 0.19947I
a = 0.052706 + 0.927660I
b = 0.39545 2.29628I
c = 0.265518 + 0.890486I
d = 0.692497 1.031290I
9.82407 3.16258I 0.50415 + 3.81889I
9
II.
I
u
2
= h−4.18 ×10
9
cu
19
3.08 ×10
9
u
19
+· · · +2.94 ×10
10
c 2.81× 10
10
, 4.91×
10
10
cu
19
3.32 × 10
10
u
19
+ · · · 2.05 × 10
11
c + 7.53 × 10
10
, 9.63 ×
10
7
u
19
+ 5.64 × 10
7
u
18
+ · · · + 6.76 × 10
9
b + 6.84 × 10
8
, 4.88 × 10
9
u
19
+
3.16 × 10
9
u
18
+ · · · + 1.08 × 10
11
a + 5.00 × 10
10
, u
20
+ u
19
+ · · · 8u 4i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
c
0.154609cu
19
+ 0.113711u
19
+ ··· 1.08808c + 1.03762
a
6
=
0.0450787u
19
0.0292022u
18
+ ··· 0.0198092u 0.462305
0.0142394u
19
0.00833941u
18
+ ··· + 0.752305u 0.101131
a
11
=
0.154609cu
19
0.113711u
19
+ ··· + 2.08808c 1.03762
0.409919cu
19
+ 0.367791u
19
+ ··· 1.57088c + 0.0883006
a
12
=
0.113711cu
19
0.158790u
19
+ ··· + 1.03762c 1.49993
0.254080cu
19
+ 0.382031u
19
+ ··· + 0.949324c 0.0128302
a
4
=
u
u
a
3
=
0.266051u
19
+ 0.0484830u
18
+ ··· + 1.26067u + 1.47399
0.780982u
19
0.190367u
18
+ ··· 1.82190u 2.40273
a
2
=
0.266051u
19
+ 0.0484830u
18
+ ··· + 1.26067u + 1.47399
0.358296u
19
0.132857u
18
+ ··· 0.369830u 1.14460
a
1
=
0.0308393u
19
+ 0.0375416u
18
+ ··· 0.732496u + 0.563435
0.0785037u
19
+ 0.0385598u
18
+ ··· + 0.575329u 0.127940
a
7
=
c
0.154609cu
19
0.113711u
19
+ ··· + 1.08808c 1.03762
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4263121051
13525530286
u
19
7308875275
13525530286
u
18
+ ···+
12379392387
13525530286
u
17100277556
6762765143
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
20
+ 6u
19
+ ··· 2u + 1)
2
c
2
, c
5
(u
20
+ 2u
19
+ ··· 2u + 1)
2
c
3
(u
20
2u
19
+ ··· + 36u + 17)
2
c
4
, c
8
(u
20
+ u
19
+ ··· 8u 4)
2
c
6
, c
7
, c
9
c
11
u
40
3u
39
+ ··· + 40u 16
c
10
, c
12
u
40
+ 19u
39
+ ··· + 288u + 256
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 18y
19
+ ··· 86y + 1)
2
c
2
, c
5
(y
20
+ 6y
19
+ ··· 2y + 1)
2
c
3
(y
20
+ 30y
19
+ ··· + 1254y + 289)
2
c
4
, c
8
(y
20
15y
19
+ ··· 24y + 16)
2
c
6
, c
7
, c
9
c
11
y
40
19y
39
+ ··· 288y + 256
c
10
, c
12
y
40
+ y
39
+ ··· 4022784y + 65536
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.685016 + 0.443026I
a = 0.568862 + 0.830797I
b = 0.504299 0.392204I
c = 0.458140 0.042470I
d = 1.164140 + 0.200619I
4.73160 + 1.82256I 11.12541 5.12436I
u = 0.685016 + 0.443026I
a = 0.568862 + 0.830797I
b = 0.504299 0.392204I
c = 0.09245 3.22238I
d = 1.008900 + 0.310075I
4.73160 + 1.82256I 11.12541 5.12436I
u = 0.685016 0.443026I
a = 0.568862 0.830797I
b = 0.504299 + 0.392204I
c = 0.458140 + 0.042470I
d = 1.164140 0.200619I
4.73160 1.82256I 11.12541 + 5.12436I
u = 0.685016 0.443026I
a = 0.568862 0.830797I
b = 0.504299 + 0.392204I
c = 0.09245 + 3.22238I
d = 1.008900 0.310075I
4.73160 1.82256I 11.12541 + 5.12436I
u = 1.176520 + 0.244065I
a = 0.859965 + 0.764175I
b = 0.170280 0.634831I
c = 0.577483 0.947538I
d = 0.531003 + 0.769533I
0.28251 3.88098I 3.93502 + 4.02252I
u = 1.176520 + 0.244065I
a = 0.859965 + 0.764175I
b = 0.170280 0.634831I
c = 0.27911 + 1.47852I
d = 0.876713 0.653077I
0.28251 3.88098I 3.93502 + 4.02252I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.176520 0.244065I
a = 0.859965 0.764175I
b = 0.170280 + 0.634831I
c = 0.577483 + 0.947538I
d = 0.531003 0.769533I
0.28251 + 3.88098I 3.93502 4.02252I
u = 1.176520 0.244065I
a = 0.859965 0.764175I
b = 0.170280 + 0.634831I
c = 0.27911 1.47852I
d = 0.876713 + 0.653077I
0.28251 + 3.88098I 3.93502 4.02252I
u = 1.256010 + 0.124886I
a = 0.141507 1.024890I
b = 0.53718 + 2.43181I
c = 0.339080 + 1.286040I
d = 0.808307 0.727038I
1.249910 + 0.191668I 2.26430 + 0.22109I
u = 1.256010 + 0.124886I
a = 0.141507 1.024890I
b = 0.53718 + 2.43181I
c = 0.408592 + 0.009946I
d = 1.44598 0.05954I
1.249910 + 0.191668I 2.26430 + 0.22109I
u = 1.256010 0.124886I
a = 0.141507 + 1.024890I
b = 0.53718 2.43181I
c = 0.339080 1.286040I
d = 0.808307 + 0.727038I
1.249910 0.191668I 2.26430 0.22109I
u = 1.256010 0.124886I
a = 0.141507 + 1.024890I
b = 0.53718 2.43181I
c = 0.408592 0.009946I
d = 1.44598 + 0.05954I
1.249910 0.191668I 2.26430 0.22109I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.268400 + 0.295253I
a = 0.028064 + 1.126150I
b = 0.27254 2.58310I
c = 0.150939 1.397650I
d = 0.923621 + 0.707241I
0.89345 + 5.67427I 3.40403 5.66395I
u = 1.268400 + 0.295253I
a = 0.028064 + 1.126150I
b = 0.27254 2.58310I
c = 0.406505 0.023413I
d = 1.45186 + 0.14122I
0.89345 + 5.67427I 3.40403 5.66395I
u = 1.268400 0.295253I
a = 0.028064 1.126150I
b = 0.27254 + 2.58310I
c = 0.150939 + 1.397650I
d = 0.923621 0.707241I
0.89345 5.67427I 3.40403 + 5.66395I
u = 1.268400 0.295253I
a = 0.028064 1.126150I
b = 0.27254 + 2.58310I
c = 0.406505 + 0.023413I
d = 1.45186 0.14122I
0.89345 5.67427I 3.40403 + 5.66395I
u = 0.439566 + 0.534727I
a = 0.615521 + 0.227907I
b = 1.140270 + 0.124755I
c = 0.820860 0.314763I
d = 0.062069 + 0.407256I
2.07115 + 0.86143I 6.44675 + 0.99952I
u = 0.439566 + 0.534727I
a = 0.615521 + 0.227907I
b = 1.140270 + 0.124755I
c = 0.487252 + 0.053221I
d = 1.028130 0.221528I
2.07115 + 0.86143I 6.44675 + 0.99952I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.439566 0.534727I
a = 0.615521 0.227907I
b = 1.140270 0.124755I
c = 0.820860 + 0.314763I
d = 0.062069 0.407256I
2.07115 0.86143I 6.44675 0.99952I
u = 0.439566 0.534727I
a = 0.615521 0.227907I
b = 1.140270 0.124755I
c = 0.487252 0.053221I
d = 1.028130 + 0.221528I
2.07115 0.86143I 6.44675 0.99952I
u = 0.089922 + 1.317200I
a = 1.071290 + 0.049857I
b = 0.363039 + 0.297014I
c = 0.481544 0.234697I
d = 0.678045 + 0.817853I
3.24441 + 2.97363I 2.07664 2.68538I
u = 0.089922 + 1.317200I
a = 1.071290 + 0.049857I
b = 0.363039 + 0.297014I
c = 0.469189 + 0.202331I
d = 0.797136 0.774990I
3.24441 + 2.97363I 2.07664 2.68538I
u = 0.089922 1.317200I
a = 1.071290 0.049857I
b = 0.363039 0.297014I
c = 0.481544 + 0.234697I
d = 0.678045 0.817853I
3.24441 2.97363I 2.07664 + 2.68538I
u = 0.089922 1.317200I
a = 1.071290 0.049857I
b = 0.363039 0.297014I
c = 0.469189 0.202331I
d = 0.797136 + 0.774990I
3.24441 2.97363I 2.07664 + 2.68538I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.36144
a = 0.518847
b = 0.534560
c = 0.339214 + 1.109820I
d = 0.748127 0.824063I
4.11381 0.668270
u = 1.36144
a = 0.518847
b = 0.534560
c = 0.339214 1.109820I
d = 0.748127 + 0.824063I
4.11381 0.668270
u = 0.610309
a = 0.180486
b = 0.423225
c = 0.465000
d = 1.15054
2.43031 0.135410
u = 0.610309
a = 0.180486
b = 0.423225
c = 2.94194
d = 0.660088
2.43031 0.135410
u = 0.078647 + 0.574169I
a = 1.80902 + 0.44215I
b = 0.199938 + 0.169761I
c = 0.556867 0.032704I
d = 0.789589 + 0.105100I
2.82359 2.30782I 10.11267 + 3.58910I
u = 0.078647 + 0.574169I
a = 1.80902 + 0.44215I
b = 0.199938 + 0.169761I
c = 7.02820 1.64334I
d = 1.134910 + 0.031544I
2.82359 2.30782I 10.11267 + 3.58910I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.078647 0.574169I
a = 1.80902 0.44215I
b = 0.199938 0.169761I
c = 0.556867 + 0.032704I
d = 0.789589 0.105100I
2.82359 + 2.30782I 10.11267 3.58910I
u = 0.078647 0.574169I
a = 1.80902 0.44215I
b = 0.199938 0.169761I
c = 7.02820 + 1.64334I
d = 1.134910 0.031544I
2.82359 + 2.30782I 10.11267 3.58910I
u = 1.47182 + 0.62184I
a = 0.151233 + 1.052600I
b = 0.10460 2.44777I
c = 0.387142 0.708904I
d = 0.406610 + 1.086570I
7.69158 9.88458I 1.61748 + 5.77638I
u = 1.47182 + 0.62184I
a = 0.151233 + 1.052600I
b = 0.10460 2.44777I
c = 0.227488 + 1.225540I
d = 1.146420 0.788786I
7.69158 9.88458I 1.61748 + 5.77638I
u = 1.47182 0.62184I
a = 0.151233 1.052600I
b = 0.10460 + 2.44777I
c = 0.387142 + 0.708904I
d = 0.406610 1.086570I
7.69158 + 9.88458I 1.61748 5.77638I
u = 1.47182 0.62184I
a = 0.151233 1.052600I
b = 0.10460 + 2.44777I
c = 0.227488 1.225540I
d = 1.146420 + 0.788786I
7.69158 + 9.88458I 1.61748 5.77638I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.52621 + 0.50989I
a = 0.106415 0.861647I
b = 0.45672 + 2.19157I
c = 0.360132 + 0.757386I
d = 0.487960 1.076860I
8.58220 + 3.56941I 0.284129 1.007355I
u = 1.52621 + 0.50989I
a = 0.106415 0.861647I
b = 0.45672 + 2.19157I
c = 0.127382 1.185430I
d = 1.089610 + 0.833946I
8.58220 + 3.56941I 0.284129 1.007355I
u = 1.52621 0.50989I
a = 0.106415 + 0.861647I
b = 0.45672 2.19157I
c = 0.360132 0.757386I
d = 0.487960 + 1.076860I
8.58220 3.56941I 0.284129 + 1.007355I
u = 1.52621 0.50989I
a = 0.106415 + 0.861647I
b = 0.45672 2.19157I
c = 0.127382 + 1.185430I
d = 1.089610 0.833946I
8.58220 3.56941I 0.284129 + 1.007355I
19
III. I
v
1
= ha, d, c 1, b + 1, v
2
+ v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
1
0
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
4
=
v
0
a
3
=
v
v
a
2
=
v + 1
v
a
1
=
0
1
a
7
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 5
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
, c
10
u
2
c
6
(u 1)
2
c
11
, c
12
(u + 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 1.00000
c = 1.00000
d = 0
1.64493 + 2.02988I 3.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 1.00000
c = 1.00000
d = 0
1.64493 2.02988I 3.00000 + 3.46410I
23
IV. I
v
2
= ha, d 1, c + a 1, b + 1, v
2
+ v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
1
1
a
6
=
0
1
a
11
=
0
1
a
12
=
0
1
a
4
=
v
0
a
3
=
v
v
a
2
=
v + 1
v
a
1
=
0
1
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 5
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
8
c
11
, c
12
u
2
c
7
(u 1)
2
c
9
, c
10
(u + 1)
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
8
c
11
, c
12
y
2
c
7
, c
9
, c
10
(y 1)
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
1.64493 + 2.02988I 3.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
1.64493 2.02988I 3.00000 + 3.46410I
27
V. I
v
3
= hc, d 1, b, a + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
1
0
a
9
=
1
0
a
10
=
0
1
a
6
=
1
0
a
11
=
1
1
a
12
=
2
1
a
4
=
1
0
a
3
=
1
0
a
2
=
1
0
a
1
=
1
0
a
7
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
u
c
6
, c
9
, c
10
c
12
u + 1
c
7
, c
11
u 1
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
y
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
3.28987 12.0000
31
VI. I
v
4
= hc, d 1, v
2
ba + v
2
b av + c v 1, b
2
v
2
bv + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
0
1
a
6
=
a
a 1
a
11
=
1
1
a
12
=
a 1
a
a
4
=
v
0
a
3
=
a
2
v + av + v
a
2
v 2av v
a
2
=
a
2
v v
2
a + av v
2
a
2
v 2av v
a
1
=
a
a + 1
a
7
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
3
v 3a
2
v 7av v
2
5v 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
32
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
3.28987 + 2.02988I 11.14313 + 3.39027I
33
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
(u
20
+ 6u
19
+ ··· 2u + 1)
2
· (u
28
+ 9u
27
+ ··· 56u + 16)
c
2
u(u
2
+ u + 1)
2
(u
20
+ 2u
19
+ ··· 2u + 1)
2
(u
28
+ u
27
+ ··· + 8u + 4)
c
3
u(u
2
u + 1)
2
(u
20
2u
19
+ ··· + 36u + 17)
2
· (u
28
u
27
+ ··· + 1736u + 1252)
c
4
, c
8
u
5
(u
20
+ u
19
+ ··· 8u 4)
2
(u
28
3u
27
+ ··· 64u + 32)
c
5
u(u
2
u + 1)
2
(u
20
+ 2u
19
+ ··· 2u + 1)
2
(u
28
+ u
27
+ ··· + 8u + 4)
c
6
u
2
(u 1)
2
(u + 1)(u
28
5u
27
+ ··· 3u + 1)
· (u
40
3u
39
+ ··· + 40u 16)
c
7
u
2
(u 1)
3
(u
28
5u
27
+ ··· 3u + 1)(u
40
3u
39
+ ··· + 40u 16)
c
9
u
2
(u + 1)
3
(u
28
5u
27
+ ··· 3u + 1)(u
40
3u
39
+ ··· + 40u 16)
c
10
, c
12
u
2
(u + 1)
3
(u
28
+ 9u
27
+ ··· + u + 1)(u
40
+ 19u
39
+ ··· + 288u + 256)
c
11
u
2
(u 1)(u + 1)
2
(u
28
5u
27
+ ··· 3u + 1)
· (u
40
3u
39
+ ··· + 40u 16)
34
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
(y
20
+ 18y
19
+ ··· 86y + 1)
2
· (y
28
+ 21y
27
+ ··· 6432y + 256)
c
2
, c
5
y(y
2
+ y + 1)
2
(y
20
+ 6y
19
+ ··· 2y + 1)
2
· (y
28
+ 9y
27
+ ··· 56y + 16)
c
3
y(y
2
+ y + 1)
2
(y
20
+ 30y
19
+ ··· + 1254y + 289)
2
· (y
28
+ 33y
27
+ ··· 17874936y + 1567504)
c
4
, c
8
y
5
(y
20
15y
19
+ ··· 24y + 16)
2
· (y
28
15y
27
+ ··· + 3072y + 1024)
c
6
, c
7
, c
9
c
11
y
2
(y 1)
3
(y
28
9y
27
+ ··· y + 1)(y
40
19y
39
+ ··· 288y + 256)
c
10
, c
12
y
2
(y 1)
3
(y
28
+ 31y
27
+ ··· + 39y + 1)
· (y
40
+ y
39
+ ··· 4022784y + 65536)
35