12n
0056
(K12n
0056
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 12 10 5 11 8 6 11
Solving Sequence
2,5
3
6,8
9 1
4,11
10 12 7
c
2
c
5
c
8
c
1
c
4
c
10
c
12
c
6
c
3
, c
7
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−303u
16
+ 1548u
15
+ ··· + 4864d + 3360, 413u
16
− 1717u
15
+ ··· + 4864c − 1676,
− 306u
16
+ 1521u
15
+ ··· + 2432b + 652, 30u
16
− 53u
15
+ ··· + 1216a − 204,
u
17
− 5u
16
+ ··· − 11u
2
+ 4i
I
u
2
= hd + u, c + u, b − u − 1, a, u
2
+ u + 1i
I
u
3
= hd + u + 1, c, b + u + 1, a, u
2
+ u + 1i
I
u
4
= hd − c + u + 1, cb − 1, a, u
2
+ u + 1i
I
v
1
= hc, d + 1, b, a − 1, v − 1i
* 4 irreducible components of dim
C
= 0, with total 22 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1