12n
0057
(K12n
0057
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 12 10 5 7 9 1 7
Solving Sequence
2,5
3
6,7,10
8 1 4 9 12 11
c
2
c
5
c
7
c
1
c
4
c
9
c
12
c
11
c
3
, c
6
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h769u
16
− 3605u
15
+ ··· + 4864d − 844, 161u
16
− 983u
15
+ ··· + 4864c + 3868,
191u
16
− 846u
15
+ ··· + 4864b + 776, 161u
16
− 983u
15
+ ··· + 4864a + 3868,
u
17
− 5u
16
+ ··· − 11u
2
+ 4i
I
u
2
= hd − u − 1, c, b − u − 1, a, u
2
+ u + 1i
I
u
3
= hd + 2u + 1, c + u, b − u, a − u, u
2
+ u + 1i
I
u
4
= hda + a
2
+ au + a − 1, c + a, b − a − u − 1, u
2
+ u + 1i
I
v
1
= ha, d − 1, c + a − 1, b + 1, v − 1i
* 4 irreducible components of dim
C
= 0, with total 22 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1