12n
0059
(K12n
0059
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 7 9 6 11
Solving Sequence
6,12 2,7
5 3
1,9
4 8 11 10
c
6
c
5
c
2
c
1
c
4
c
8
c
11
c
10
c
3
, c
7
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
11
+ 5u
10
− 14u
9
+ 25u
8
− 36u
7
+ 34u
6
− 22u
5
− 2u
4
− 3u
3
+ u
2
+ 16d − 20u + 1,
− u
11
+ 5u
10
− 14u
9
+ 25u
8
− 36u
7
+ 34u
6
− 22u
5
− 2u
4
− 3u
3
+ u
2
+ 16c − 36u + 1,
− 4u
12
+ 19u
11
− 47u
10
+ 68u
9
− 73u
8
+ 26u
7
+ 46u
6
− 108u
5
+ 22u
4
+ 27u
3
− 111u
2
+ 16b − 48u + 7,
− 11u
12
+ 51u
11
+ ··· + 16a + 2,
u
13
− 5u
12
+ 13u
11
− 20u
10
+ 22u
9
− 9u
8
− 14u
7
+ 36u
6
− 19u
5
− 3u
4
+ 33u
3
− 4u + 1i
I
u
2
= h−953u
9
+ 3087u
8
+ ··· + 16432d + 4012,
u
9
− 3u
8
+ 5u
7
+ 3u
6
− 12u
5
+ 10u
4
+ 17u
3
− 18u
2
+ 16c − 23u + 8,
1173u
9
− 2403u
8
+ ··· + 32864b − 14956, −5403u
9
+ 34813u
8
+ ··· + 131456a − 281772,
u
10
− 3u
9
+ 5u
8
+ 3u
7
− 12u
6
+ 10u
5
+ 17u
4
− 18u
3
− 23u
2
+ 8u + 16i
I
u
3
= hd − 1, c − 1, 2b − a − 1, a
2
+ 3, u − 1i
I
u
4
= hd, c + 1, b, a − 1, u + 1i
I
u
5
= hd − c + 1, 2cb − ca − c − b + a + 1, a
2
c − ba − a
2
+ 3c − b − 1, b
2
− b + 1, u − 1i
I
v
1
= ha, d − 1, ba + c + b − a, b
2
− b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 28 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1