12n
0059
(K12n
0059
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 7 9 6 11
Solving Sequence
6,12 2,7
5 3
1,9
4 8 11 10
c
6
c
5
c
2
c
1
c
4
c
8
c
11
c
10
c
3
, c
7
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
11
+ 5u
10
14u
9
+ 25u
8
36u
7
+ 34u
6
22u
5
2u
4
3u
3
+ u
2
+ 16d 20u + 1,
u
11
+ 5u
10
14u
9
+ 25u
8
36u
7
+ 34u
6
22u
5
2u
4
3u
3
+ u
2
+ 16c 36u + 1,
4u
12
+ 19u
11
47u
10
+ 68u
9
73u
8
+ 26u
7
+ 46u
6
108u
5
+ 22u
4
+ 27u
3
111u
2
+ 16b 48u + 7,
11u
12
+ 51u
11
+ ··· + 16a + 2,
u
13
5u
12
+ 13u
11
20u
10
+ 22u
9
9u
8
14u
7
+ 36u
6
19u
5
3u
4
+ 33u
3
4u + 1i
I
u
2
= h−953u
9
+ 3087u
8
+ ··· + 16432d + 4012,
u
9
3u
8
+ 5u
7
+ 3u
6
12u
5
+ 10u
4
+ 17u
3
18u
2
+ 16c 23u + 8,
1173u
9
2403u
8
+ ··· + 32864b 14956, 5403u
9
+ 34813u
8
+ ··· + 131456a 281772,
u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16i
I
u
3
= hd 1, c 1, 2b a 1, a
2
+ 3, u 1i
I
u
4
= hd, c + 1, b, a 1, u + 1i
I
u
5
= hd c + 1, 2cb ca c b + a + 1, a
2
c ba a
2
+ 3c b 1, b
2
b + 1, u 1i
I
v
1
= ha, d 1, ba + c + b a, b
2
b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 28 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
11
+ 5u
10
+ · · · + 16d + 1, u
11
+ 5u
10
+ · · · + 16c + 1, 4u
12
+
19u
11
+ · · · + 16b + 7, 11u
12
+ 51u
11
+ · · · + 16a + 2, u
13
5u
12
+ · · · 4u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
2
=
0.687500u
12
3.18750u
11
+ ··· + 8.68750u 0.125000
1
4
u
12
19
16
u
11
+ ··· + 3u
7
16
a
7
=
1
u
2
a
5
=
9
8
u
12
87
16
u
11
+ ··· +
49
8
u
41
16
5
16
u
12
3
2
u
11
+ ··· +
15
16
u
17
16
a
3
=
9
8
u
12
85
16
u
11
+ ··· +
37
4
u
57
16
3
16
u
12
7
8
u
11
+ ··· +
29
16
u
17
16
a
1
=
u
3
u
3
+ u
a
9
=
1
16
u
11
5
16
u
10
+ ··· +
9
4
u
1
16
1
16
u
11
5
16
u
10
+ ··· +
5
4
u
1
16
a
4
=
0.937500u
12
4.43750u
11
+ ··· + 7.43750u 2.50000
3
16
u
12
7
8
u
11
+ ··· +
29
16
u
17
16
a
8
=
1
16
u
12
+
5
16
u
11
+ ··· +
1
16
u 1
0.0625000u
12
+ 0.312500u
11
+ ··· 2.25000u
2
+ 0.0625000u
a
11
=
u
u
a
10
=
1
16
u
11
5
16
u
10
+ ··· +
5
4
u
1
16
1
16
u
11
5
16
u
10
+ ··· +
5
4
u
1
16
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
4
u
12
+
47
8
u
11
113
8
u
10
+
75
4
u
9
127
8
u
8
19
4
u
7
+
129
4
u
6
101
2
u
5
+
31
2
u
4
+
135
8
u
3
385
8
u
2
9
4
u
3
8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 3u
12
+ ··· + 104u 16
c
2
, c
5
u
13
+ u
12
+ ··· + 12u + 4
c
3
u
13
u
12
+ ··· + 1508u + 548
c
4
, c
8
u
13
3u
12
+ ··· 32u + 32
c
6
, c
7
, c
9
c
11
u
13
5u
12
+ ··· 4u + 1
c
10
, c
12
u
13
u
12
+ ··· + 16u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 15y
12
+ ··· + 21024y 256
c
2
, c
5
y
13
+ 3y
12
+ ··· + 104y 16
c
3
y
13
+ 27y
12
+ ··· + 1970472y 300304
c
4
, c
8
y
13
+ 15y
12
+ ··· + 15616y
2
1024
c
6
, c
7
, c
9
c
11
y
13
+ y
12
+ ··· + 16y 1
c
10
, c
12
y
13
+ 25y
12
+ ··· 260y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.801603 + 0.173700I
a = 0.33896 2.10199I
b = 0.386403 0.917053I
c = 2.30333 + 2.55112I
d = 1.50172 + 2.37742I
2.92013 + 2.62586I 15.8235 5.3570I
u = 0.801603 0.173700I
a = 0.33896 + 2.10199I
b = 0.386403 + 0.917053I
c = 2.30333 2.55112I
d = 1.50172 2.37742I
2.92013 2.62586I 15.8235 + 5.3570I
u = 0.536277 + 1.193890I
a = 0.51569 1.90253I
b = 0.543511 1.275200I
c = 0.123143 + 1.043180I
d = 0.659420 0.150709I
1.88235 4.50009I 8.08386 + 3.64476I
u = 0.536277 1.193890I
a = 0.51569 + 1.90253I
b = 0.543511 + 1.275200I
c = 0.123143 1.043180I
d = 0.659420 + 0.150709I
1.88235 + 4.50009I 8.08386 3.64476I
u = 0.16802 + 1.50582I
a = 0.228716 + 0.403848I
b = 1.124080 + 0.602862I
c = 0.040508 + 0.923402I
d = 0.208529 0.582421I
4.55733 + 1.91344I 6.23694 1.74226I
u = 0.16802 1.50582I
a = 0.228716 0.403848I
b = 1.124080 0.602862I
c = 0.040508 0.923402I
d = 0.208529 + 0.582421I
4.55733 1.91344I 6.23694 + 1.74226I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.484585
a = 0.133729
b = 0.330680
c = 1.26660
d = 0.782011
0.936151 9.94250
u = 0.221947 + 0.150698I
a = 2.33617 + 2.53886I
b = 0.416573 + 0.881458I
c = 0.432682 + 0.339349I
d = 0.210735 + 0.188651I
0.33676 + 1.74909I 2.22256 3.20069I
u = 0.221947 0.150698I
a = 2.33617 2.53886I
b = 0.416573 0.881458I
c = 0.432682 0.339349I
d = 0.210735 0.188651I
0.33676 1.74909I 2.22256 + 3.20069I
u = 1.47195 + 0.93931I
a = 0.33996 + 1.95869I
b = 0.85913 + 1.17284I
c = 0.780587 + 0.984352I
d = 2.25253 + 0.04505I
11.8885 13.4346I 9.57192 + 6.10692I
u = 1.47195 0.93931I
a = 0.33996 1.95869I
b = 0.85913 1.17284I
c = 0.780587 0.984352I
d = 2.25253 0.04505I
11.8885 + 13.4346I 9.57192 6.10692I
u = 1.48175 + 1.16585I
a = 0.794977 0.404986I
b = 1.173290 0.753740I
c = 0.632835 + 0.887715I
d = 2.11458 0.27814I
13.3607 6.1261I 8.08998 + 1.87384I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48175 1.16585I
a = 0.794977 + 0.404986I
b = 1.173290 + 0.753740I
c = 0.632835 0.887715I
d = 2.11458 + 0.27814I
13.3607 + 6.1261I 8.08998 1.87384I
7
II. I
u
2
= h−953u
9
+ 3087u
8
+ · · · + 1.64 × 10
4
d + 4012, u
9
3u
8
+ · · · +
16c + 8, 1173u
9
2403u
8
+ · · · + 3.29 × 10
4
b 1.50 × 10
4
, 5403u
9
+ 3.48 ×
10
4
u
8
+ · · · + 1.31 × 10
5
a 2.82 × 10
5
, u
10
3u
9
+ · · · + 8u + 16i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
2
=
0.0411012u
9
0.264826u
8
+ ··· + 0.132143u + 2.14347
0.0356926u
9
+ 0.0731195u
8
+ ··· + 1.02711u + 0.455088
a
7
=
1
u
2
a
5
=
0.0111748u
9
+ 0.0180973u
8
+ ··· 0.776998u + 1.11669
0.0664253u
9
+ 0.182114u
8
+ ··· + 0.191121u 0.0388267
a
3
=
0.0181430u
9
+ 0.0259783u
8
+ ··· + 0.680981u + 1.11560
0.0188352u
9
+ 0.0846215u
8
+ ··· + 1.15497u + 0.0210565
a
1
=
u
3
u
3
+ u
a
9
=
1
16
u
9
+
3
16
u
8
+ ··· +
23
16
u
1
2
0.0579966u
9
0.187865u
8
+ ··· + 0.244949u 0.244158
a
4
=
0.000692247u
9
0.0586432u
8
+ ··· 0.473991u + 1.09454
0.0188352u
9
+ 0.0846215u
8
+ ··· + 1.15497u + 0.0210565
a
8
=
0.00138449u
9
0.132714u
8
+ ··· + 1.44798u + 1.56092
0.0272639u
9
0.0788705u
8
+ ··· + 0.408958u + 0.261928
a
11
=
u
u
a
10
=
0.120497u
9
+ 0.375365u
8
+ ··· + 2.19255u 0.255842
0.0208739u
9
+ 0.0760102u
8
+ ··· + 1.06189u 0.466164
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2627
8216
u
9
5949
8216
u
8
+
10627
8216
u
7
+
7149
8216
u
6
750
1027
u
5
+
783
4108
u
4
+
3815
632
u
3
61
4108
u
2
48917
8216
u
26527
2054
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 6u
3
+ u 1)
2
c
2
, c
5
(u
5
+ 2u
4
+ 2u
3
+ u + 1)
2
c
3
(u
5
2u
4
+ 14u
3
+ 16u
2
+ 9u + 9)
2
c
4
, c
8
(u
5
+ u
4
+ 8u
3
+ u
2
4u + 4)
2
c
6
, c
7
, c
9
c
11
u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16
c
10
, c
12
u
10
u
9
+ ··· + 800u + 256
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 12y
4
+ 38y
3
+ 12y
2
+ y 1)
2
c
2
, c
5
(y
5
+ 6y
3
+ y 1)
2
c
3
(y
5
+ 24y
4
+ 278y
3
+ 32y
2
207y 81)
2
c
4
, c
8
(y
5
+ 15y
4
+ 54y
3
73y
2
+ 8y 16)
2
c
6
, c
7
, c
9
c
11
y
10
+ y
9
+ ··· 800y + 256
c
10
, c
12
y
10
+ 37y
9
+ ··· + 56832y + 65536
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.049680 + 0.199668I
a = 0.315545 1.329000I
b = 0.436447 0.655029I
c = 0.919405 0.174888I
d = 0.012768 + 0.392223I
3.34738 1.37362I 12.45374 + 4.59823I
u = 1.049680 0.199668I
a = 0.315545 + 1.329000I
b = 0.436447 + 0.655029I
c = 0.919405 + 0.174888I
d = 0.012768 0.392223I
3.34738 + 1.37362I 12.45374 4.59823I
u = 1.062450 + 0.192555I
a = 2.81509 + 0.58996I
b = 0.436447 0.655029I
c = 0.911290 0.165159I
d = 0.012768 + 0.392223I
3.34738 1.37362I 12.45374 + 4.59823I
u = 1.062450 0.192555I
a = 2.81509 0.58996I
b = 0.436447 + 0.655029I
c = 0.911290 + 0.165159I
d = 0.012768 0.392223I
3.34738 + 1.37362I 12.45374 4.59823I
u = 0.673909 + 0.602045I
a = 0.077759 0.365647I
b = 0.668466
c = 0.825250 0.737248I
d = 1.34782
0.737094 7.65039 + 0.I
u = 0.673909 0.602045I
a = 0.077759 + 0.365647I
b = 0.668466
c = 0.825250 + 0.737248I
d = 1.34782
0.737094 7.65039 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.89973 + 1.70648I
a = 0.441618 0.955764I
b = 1.10221 1.09532I
c = 0.241760 0.458535I
d = 2.18668 + 0.19022I
14.4080 + 4.0569I 7.72106 1.95729I
u = 0.89973 1.70648I
a = 0.441618 + 0.955764I
b = 1.10221 + 1.09532I
c = 0.241760 + 0.458535I
d = 2.18668 0.19022I
14.4080 4.0569I 7.72106 + 1.95729I
u = 1.28694 + 1.51626I
a = 0.10517 + 1.45128I
b = 1.10221 + 1.09532I
c = 0.325375 0.383352I
d = 2.18668 0.19022I
14.4080 4.0569I 7.72106 + 1.95729I
u = 1.28694 1.51626I
a = 0.10517 1.45128I
b = 1.10221 1.09532I
c = 0.325375 + 0.383352I
d = 2.18668 + 0.19022I
14.4080 + 4.0569I 7.72106 1.95729I
12
III. I
u
3
= hd 1, c 1, 2b a 1, a
2
+ 3, u 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
1
a
2
=
a
1
2
a +
1
2
a
7
=
1
1
a
5
=
1
2
a
1
2
1
2
a
1
2
a
3
=
a 1
1
2
a
1
2
a
1
=
1
0
a
9
=
1
1
a
4
=
1
2
a
1
2
1
2
a
1
2
a
8
=
1
1
a
11
=
1
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2a 9
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
, c
10
u
2
c
6
(u 1)
2
c
11
, c
12
(u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.73205I
b = 0.500000 + 0.866025I
c = 1.00000
d = 1.00000
1.64493 + 2.02988I 9.00000 3.46410I
u = 1.00000
a = 1.73205I
b = 0.500000 0.866025I
c = 1.00000
d = 1.00000
1.64493 2.02988I 9.00000 + 3.46410I
16
IV. I
u
4
= hd, c + 1, b, a 1, u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
1
a
2
=
1
0
a
7
=
1
1
a
5
=
1
0
a
3
=
1
0
a
1
=
1
0
a
9
=
1
0
a
4
=
1
0
a
8
=
1
0
a
11
=
1
1
a
10
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
u
c
6
, c
9
, c
10
c
12
u + 1
c
7
, c
11
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
y
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
c = 1.00000
d = 0
3.28987 12.0000
20
V.
I
u
5
= hdc+1, 2cbcacb+a+1, a
2
cbaa
2
+3cb1, b
2
b+1, u1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
1
a
2
=
a
b
a
7
=
1
1
a
5
=
ba + 1
b 1
a
3
=
ba + b
b 1
a
1
=
1
0
a
9
=
c
c 1
a
4
=
ba + 1
b 1
a
8
=
c
c 1
a
11
=
1
1
a
10
=
c + 1
c
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
c
2
a + a
2
b
1
2
c
2
5
4
ca + 2ba a
2
+
3
4
c
27
4
b +
11
4
a
37
4
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
21
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
5
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
c = ···
d = ···
3.28987 + 2.02988I 11.15346 3.50312I
22
VI. I
v
1
= ha, d 1, ba + c + b a, b
2
b + 1, v + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
1
0
a
2
=
0
b
a
7
=
1
0
a
5
=
1
b 1
a
3
=
b
b 1
a
1
=
1
0
a
9
=
b
1
a
4
=
1
b 1
a
8
=
b
1
a
11
=
1
0
a
10
=
b 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b 7
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
8
c
11
, c
12
u
2
c
7
(u 1)
2
c
9
, c
10
(u + 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
8
c
11
, c
12
y
2
c
7
, c
9
, c
10
(y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 0.866025I
c = 0.500000 + 0.866025I
d = 1.00000
1.64493 + 2.02988I 9.00000 3.46410I
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
c = 0.500000 0.866025I
d = 1.00000
1.64493 2.02988I 9.00000 + 3.46410I
26
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
(u
5
+ 6u
3
+ u 1)
2
(u
13
+ 3u
12
+ ··· + 104u 16)
c
2
u(u
2
+ u + 1)
2
(u
5
+ 2u
4
+ ··· + u + 1)
2
(u
13
+ u
12
+ ··· + 12u + 4)
c
3
u(u
2
u + 1)
2
(u
5
2u
4
+ 14u
3
+ 16u
2
+ 9u + 9)
2
· (u
13
u
12
+ ··· + 1508u + 548)
c
4
, c
8
u
5
(u
5
+ u
4
+ ··· 4u + 4)
2
(u
13
3u
12
+ ··· 32u + 32)
c
5
u(u
2
u + 1)
2
(u
5
+ 2u
4
+ ··· + u + 1)
2
(u
13
+ u
12
+ ··· + 12u + 4)
c
6
u
2
(u 1)
2
(u + 1)
· (u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16)
· (u
13
5u
12
+ ··· 4u + 1)
c
7
u
2
(u 1)
3
· (u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16)
· (u
13
5u
12
+ ··· 4u + 1)
c
9
u
2
(u + 1)
3
· (u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16)
· (u
13
5u
12
+ ··· 4u + 1)
c
10
, c
12
u
2
(u + 1)
3
(u
10
u
9
+ ··· + 800u + 256)(u
13
u
12
+ ··· + 16u + 1)
c
11
u
2
(u 1)(u + 1)
2
· (u
10
3u
9
+ 5u
8
+ 3u
7
12u
6
+ 10u
5
+ 17u
4
18u
3
23u
2
+ 8u + 16)
· (u
13
5u
12
+ ··· 4u + 1)
27
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
(y
5
+ 12y
4
+ 38y
3
+ 12y
2
+ y 1)
2
· (y
13
+ 15y
12
+ ··· + 21024y 256)
c
2
, c
5
y(y
2
+ y + 1)
2
(y
5
+ 6y
3
+ y 1)
2
(y
13
+ 3y
12
+ ··· + 104y 16)
c
3
y(y
2
+ y + 1)
2
(y
5
+ 24y
4
+ 278y
3
+ 32y
2
207y 81)
2
· (y
13
+ 27y
12
+ ··· + 1970472y 300304)
c
4
, c
8
y
5
(y
5
+ 15y
4
+ 54y
3
73y
2
+ 8y 16)
2
· (y
13
+ 15y
12
+ ··· + 15616y
2
1024)
c
6
, c
7
, c
9
c
11
y
2
(y 1)
3
(y
10
+ y
9
+ ··· 800y + 256)(y
13
+ y
12
+ ··· + 16y 1)
c
10
, c
12
y
2
(y 1)
3
(y
10
+ 37y
9
+ ··· + 56832y + 65536)
· (y
13
+ 25y
12
+ ··· 260y 1)
28