12n
0060
(K12n
0060
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 11 8 6 11
Solving Sequence
4,9 5,11 6,10
12 3 2 1 8 7
c
4
c
9
c
11
c
3
c
2
c
1
c
8
c
7
c
5
, c
6
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.71438 × 10
84
u
46
3.94862 × 10
84
u
45
+ ··· + 5.11546 × 10
87
d + 5.51326 × 10
87
,
1.81915 × 10
85
u
46
2.40556 × 10
85
u
45
+ ··· + 1.27887 × 10
87
c + 1.47462 × 10
88
,
7.84763 × 10
95
u
46
+ 5.19621 × 10
95
u
45
+ ··· + 6.09681 × 10
98
b 4.85317 × 10
98
,
1.61790 × 10
97
u
46
+ 2.28917 × 10
97
u
45
+ ··· + 6.09681 × 10
98
a 1.26868 × 10
100
,
u
47
2u
46
+ ··· + 1024u 512i
I
u
2
= hu
4
c
2
+ u
3
c
2
u
4
c 2c
2
u
2
2u
3
c c
2
u + u
2
c + c
2
+ 3cu + d c,
2u
4
c
2
2u
3
c
2
+ u
4
c + 4c
2
u
2
+ 2u
3
c + c
3
+ 2c
2
u u
2
c 2c
2
3cu u, b u, a u,
u
5
+ u
4
2u
3
u
2
+ u 1i
I
v
1
= ha, d v + 1, c + a, b + v 1, v
2
v + 1i
I
v
2
= ha, d, c v, b v 1, v
2
+ v + 1i
I
v
3
= hc, d + 1, b, a 1, v 1i
I
v
4
= ha, da cb + 1, dv + 1, cv ba + bv + a v, b
2
b + 1i
* 5 irreducible components of dim
C
= 0, with total 67 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.71×10
84
u
46
3.95×10
84
u
45
+· · ·+5.12×10
87
d+5.51×10
87
, 1.82×
10
85
u
46
2.41 × 10
85
u
45
+ · · · + 1.28 × 10
87
c + 1.47 × 10
88
, 7.85 × 10
95
u
46
+
5.20 × 10
95
u
45
+ · · · + 6.10 × 10
98
b 4.85 × 10
98
, 1.62 × 10
97
u
46
+ 2.29 ×
10
97
u
45
+ · · · + 6.10 × 10
98
a 1.27 × 10
100
, u
47
2u
46
+ · · · + 1024u 512i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
11
=
0.0142247u
46
+ 0.0188101u
45
+ ··· + 6.02241u 11.5307
0.000530623u
46
+ 0.000771899u
45
+ ··· 0.720071u 1.07776
a
6
=
0.0265369u
46
0.0375470u
45
+ ··· 11.6287u + 20.8089
0.00128717u
46
0.000852284u
45
+ ··· 0.317834u + 0.796018
a
10
=
0.0226340u
46
+ 0.0298604u
45
+ ··· + 10.2154u 17.4046
0.00787872u
46
+ 0.0118222u
45
+ ··· + 3.47297u 6.95164
a
12
=
0.0239734u
46
+ 0.0351954u
45
+ ··· + 10.0932u 19.6370
0.000874062u
46
+ 0.00264928u
45
+ ··· 0.431382u 2.36213
a
3
=
0.00513208u
46
0.00817440u
45
+ ··· + 0.763266u + 5.03316
0.00862965u
46
0.0123123u
45
+ ··· 4.96716u + 7.59297
a
2
=
0.00521744u
46
+ 0.00448641u
45
+ ··· + 6.21813u 1.48986
0.00291266u
46
0.00502319u
45
+ ··· 2.03496u + 3.47740
a
1
=
0.0252497u
46
0.0366947u
45
+ ··· 11.3108u + 20.0129
0.00558802u
46
0.00914935u
45
+ ··· 0.890394u + 6.27203
a
8
=
u
u
a
7
=
0.0207800u
46
0.0264941u
45
+ ··· 9.33005u + 15.3882
0.00655528u
46
0.00768405u
45
+ ··· 3.30765u + 3.85754
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0132573u
46
0.0100723u
45
+ ··· 23.2337u 1.69873
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 24u
46
+ ··· + 216u 16
c
2
, c
5
u
47
+ 2u
46
+ ··· + 16u + 4
c
3
u
47
2u
46
+ ··· 21456u + 2592
c
4
, c
8
u
47
+ 2u
46
+ ··· + 1024u + 512
c
6
, c
11
u
47
8u
46
+ ··· + 56u + 16
c
7
, c
10
u
47
+ 8u
46
+ ··· + 56u + 16
c
9
u
47
14u
46
+ ··· + 6688u 256
c
12
u
47
+ 54u
46
+ ··· + 544u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 48y
45
+ ··· + 67872y 256
c
2
, c
5
y
47
+ 24y
46
+ ··· + 216y 16
c
3
y
47
24y
46
+ ··· + 353776896y 6718464
c
4
, c
8
y
47
30y
46
+ ··· + 1572864y 262144
c
6
, c
11
y
47
54y
46
+ ··· + 544y 256
c
7
, c
10
y
47
14y
46
+ ··· + 6688y 256
c
9
y
47
+ 46y
46
+ ··· + 11182592y 65536
c
12
y
47
114y
46
+ ··· 1990144y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.168857 + 0.977277I
a = 0.115176 0.466477I
b = 0.993069 0.480924I
c = 0.880204 0.225891I
d = 0.230994 + 0.477533I
0.50019 + 4.79223I 2.43501 7.48976I
u = 0.168857 0.977277I
a = 0.115176 + 0.466477I
b = 0.993069 + 0.480924I
c = 0.880204 + 0.225891I
d = 0.230994 0.477533I
0.50019 4.79223I 2.43501 + 7.48976I
u = 0.758370 + 0.572620I
a = 0.056911 1.268310I
b = 0.176331 0.077095I
c = 0.238166 + 0.368256I
d = 0.259334 + 0.830862I
3.62778 1.19000I 10.45074 + 1.01195I
u = 0.758370 0.572620I
a = 0.056911 + 1.268310I
b = 0.176331 + 0.077095I
c = 0.238166 0.368256I
d = 0.259334 0.830862I
3.62778 + 1.19000I 10.45074 1.01195I
u = 0.798854 + 0.256222I
a = 0.287839 0.327673I
b = 0.167965 1.279390I
c = 0.461116 0.948349I
d = 1.30820 1.68280I
1.43042 + 3.68269I 0.57615 8.67104I
u = 0.798854 0.256222I
a = 0.287839 + 0.327673I
b = 0.167965 + 1.279390I
c = 0.461116 + 0.948349I
d = 1.30820 + 1.68280I
1.43042 3.68269I 0.57615 + 8.67104I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.287114 + 0.709757I
a = 0.578531 0.174810I
b = 0.451429 0.388165I
c = 1.015380 0.600162I
d = 0.205691 + 0.340554I
1.71355 0.99880I 4.04476 + 2.43406I
u = 0.287114 0.709757I
a = 0.578531 + 0.174810I
b = 0.451429 + 0.388165I
c = 1.015380 + 0.600162I
d = 0.205691 0.340554I
1.71355 + 0.99880I 4.04476 2.43406I
u = 0.723521 + 0.092490I
a = 3.48927 1.92959I
b = 0.757487 0.595429I
c = 1.96585 0.11713I
d = 0.329861 + 0.036001I
0.84436 2.80891I 4.36866 + 6.45196I
u = 0.723521 0.092490I
a = 3.48927 + 1.92959I
b = 0.757487 + 0.595429I
c = 1.96585 + 0.11713I
d = 0.329861 0.036001I
0.84436 + 2.80891I 4.36866 6.45196I
u = 0.549584 + 0.433005I
a = 1.88335 0.62690I
b = 0.086194 0.585488I
c = 1.67372 0.58265I
d = 0.277903 + 0.181976I
2.18982 0.74670I 2.91211 1.96105I
u = 0.549584 0.433005I
a = 1.88335 + 0.62690I
b = 0.086194 + 0.585488I
c = 1.67372 + 0.58265I
d = 0.277903 0.181976I
2.18982 + 0.74670I 2.91211 + 1.96105I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.659997 + 0.157577I
a = 0.229959 0.371748I
b = 0.575360 1.171710I
c = 0.729227 0.739183I
d = 1.80686 1.34660I
1.05099 + 1.22135I 3.11104 + 2.86511I
u = 0.659997 0.157577I
a = 0.229959 + 0.371748I
b = 0.575360 + 1.171710I
c = 0.729227 + 0.739183I
d = 1.80686 + 1.34660I
1.05099 1.22135I 3.11104 2.86511I
u = 0.226818 + 1.310000I
a = 0.395536 + 0.047557I
b = 1.354130 + 0.342438I
c = 1.007050 0.000849I
d = 0.341442 + 0.559896I
4.12204 + 2.83071I 3.10594 2.47522I
u = 0.226818 1.310000I
a = 0.395536 0.047557I
b = 1.354130 0.342438I
c = 1.007050 + 0.000849I
d = 0.341442 0.559896I
4.12204 2.83071I 3.10594 + 2.47522I
u = 0.024914 + 0.666306I
a = 0.187765 + 0.490307I
b = 0.676859 + 0.593604I
c = 0.299606 0.388234I
d = 0.038036 + 0.428504I
0.68586 1.51893I 2.03699 0.09471I
u = 0.024914 0.666306I
a = 0.187765 0.490307I
b = 0.676859 0.593604I
c = 0.299606 + 0.388234I
d = 0.038036 0.428504I
0.68586 + 1.51893I 2.03699 + 0.09471I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.275400 + 0.425723I
a = 1.190730 + 0.205684I
b = 1.29665 0.64292I
c = 0.045370 1.113460I
d = 0.59246 1.84112I
1.49383 + 5.48046I 1.24533 5.03878I
u = 1.275400 0.425723I
a = 1.190730 0.205684I
b = 1.29665 + 0.64292I
c = 0.045370 + 1.113460I
d = 0.59246 + 1.84112I
1.49383 5.48046I 1.24533 + 5.03878I
u = 1.351470 + 0.126259I
a = 0.200409 + 0.288465I
b = 0.63511 + 1.89146I
c = 0.044710 0.963693I
d = 0.50842 1.59992I
5.10242 0.08441I 6.12902 + 0.I
u = 1.351470 0.126259I
a = 0.200409 0.288465I
b = 0.63511 1.89146I
c = 0.044710 + 0.963693I
d = 0.50842 + 1.59992I
5.10242 + 0.08441I 6.12902 + 0.I
u = 0.062543 + 0.611080I
a = 2.98020 5.04065I
b = 0.392543 + 1.124120I
c = 0.382597 0.828016I
d = 0.060601 + 0.347239I
0.53961 + 2.33649I 0.16377 3.97632I
u = 0.062543 0.611080I
a = 2.98020 + 5.04065I
b = 0.392543 1.124120I
c = 0.382597 + 0.828016I
d = 0.060601 0.347239I
0.53961 2.33649I 0.16377 + 3.97632I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.354510 + 0.305217I
a = 0.237962 + 0.257635I
b = 0.10673 + 1.95842I
c = 0.009355 1.056680I
d = 0.53250 1.74040I
4.74548 5.93381I 5.07129 + 5.57342I
u = 1.354510 0.305217I
a = 0.237962 0.257635I
b = 0.10673 1.95842I
c = 0.009355 + 1.056680I
d = 0.53250 + 1.74040I
4.74548 + 5.93381I 5.07129 5.57342I
u = 1.42975 + 0.19774I
a = 1.065100 + 0.614192I
b = 1.111480 0.181975I
c = 0.065967 1.017040I
d = 0.46521 1.66816I
5.91128 1.72117I 6.79419 + 0.I
u = 1.42975 0.19774I
a = 1.065100 0.614192I
b = 1.111480 + 0.181975I
c = 0.065967 + 1.017040I
d = 0.46521 + 1.66816I
5.91128 + 1.72117I 6.79419 + 0.I
u = 0.01170 + 1.48787I
a = 0.011715 0.454077I
b = 1.331480 + 0.029628I
c = 0.940701 + 0.145408I
d = 0.335520 + 0.668373I
8.14593 + 1.35024I 0
u = 0.01170 1.48787I
a = 0.011715 + 0.454077I
b = 1.331480 0.029628I
c = 0.940701 0.145408I
d = 0.335520 0.668373I
8.14593 1.35024I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.509235
a = 1.22614
b = 0.258456
c = 0.155794
d = 0.708911
1.19981 8.75910
u = 1.38697 + 0.55724I
a = 1.46233 + 0.24224I
b = 1.61416 0.56868I
c = 0.006312 1.182540I
d = 0.48982 1.92078I
4.40802 10.56830I 0
u = 1.38697 0.55724I
a = 1.46233 0.24224I
b = 1.61416 + 0.56868I
c = 0.006312 + 1.182540I
d = 0.48982 + 1.92078I
4.40802 + 10.56830I 0
u = 0.40359 + 1.45989I
a = 0.049725 + 0.404703I
b = 1.58609 + 0.36933I
c = 1.117100 + 0.048331I
d = 0.422301 + 0.553774I
7.37650 7.69255I 0
u = 0.40359 1.45989I
a = 0.049725 0.404703I
b = 1.58609 0.36933I
c = 1.117100 0.048331I
d = 0.422301 0.553774I
7.37650 + 7.69255I 0
u = 1.43182 + 0.71566I
a = 1.063460 0.335902I
b = 1.52462 + 1.08887I
c = 0.026296 1.248550I
d = 0.43018 2.00472I
7.91018 10.04820I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43182 0.71566I
a = 1.063460 + 0.335902I
b = 1.52462 1.08887I
c = 0.026296 + 1.248550I
d = 0.43018 + 2.00472I
7.91018 + 10.04820I 0
u = 1.55076 + 0.46120I
a = 1.050920 + 0.198058I
b = 1.71496 0.70487I
c = 0.323059 + 0.821313I
d = 0.176351 + 1.365460I
10.01530 + 3.44751I 0
u = 1.55076 0.46120I
a = 1.050920 0.198058I
b = 1.71496 + 0.70487I
c = 0.323059 0.821313I
d = 0.176351 1.365460I
10.01530 3.44751I 0
u = 1.43192 + 0.83141I
a = 1.253390 0.502519I
b = 1.82714 + 0.82143I
c = 0.030872 1.291190I
d = 0.40061 2.06181I
10.6565 + 15.7212I 0
u = 1.43192 0.83141I
a = 1.253390 + 0.502519I
b = 1.82714 0.82143I
c = 0.030872 + 1.291190I
d = 0.40061 + 2.06181I
10.6565 15.7212I 0
u = 1.59024 + 0.63743I
a = 1.215800 + 0.253500I
b = 1.87247 0.52042I
c = 0.397507 + 0.800239I
d = 0.092374 + 1.330860I
13.2358 8.9369I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59024 0.63743I
a = 1.215800 0.253500I
b = 1.87247 + 0.52042I
c = 0.397507 0.800239I
d = 0.092374 1.330860I
13.2358 + 8.9369I 0
u = 1.61640 + 0.61957I
a = 0.679853 0.543396I
b = 0.932855 + 0.745500I
c = 0.096470 1.214810I
d = 0.35117 1.92445I
13.4084 + 6.2441I 0
u = 1.61640 0.61957I
a = 0.679853 + 0.543396I
b = 0.932855 0.745500I
c = 0.096470 + 1.214810I
d = 0.35117 + 1.92445I
13.4084 6.2441I 0
u = 1.74703 + 0.30124I
a = 0.853693 + 0.410109I
b = 1.33429 0.54288I
c = 0.316872 + 0.927449I
d = 0.16562 + 1.49317I
14.9547 + 0.9173I 0
u = 1.74703 0.30124I
a = 0.853693 0.410109I
b = 1.33429 + 0.54288I
c = 0.316872 0.927449I
d = 0.16562 1.49317I
14.9547 0.9173I 0
12
II. I
u
2
= hu
4
c
2
u
4
c + · · · + c
2
c, 2u
4
c
2
+ u
4
c + · · · + c
3
2c
2
, b u, a
u, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
11
=
c
u
4
c
2
u
3
c
2
+ u
4
c + 2c
2
u
2
+ 2u
3
c + c
2
u u
2
c c
2
3cu + c
a
6
=
u
u
a
10
=
c
2
u
u
4
c
2
u
3
c
2
+ u
4
c + 2c
2
u
2
+ 2u
3
c + 2c
2
u u
2
c c
2
3cu
a
12
=
c
2
u
u
4
c
2
u
3
c
2
+ u
4
c + 2c
2
u
2
+ 2u
3
c + 2c
2
u u
2
c c
2
3cu
a
3
=
u
2
+ 1
u
2
a
2
=
u
4
+ u
2
+ 1
u
4
+ u
3
+ u
2
2u + 1
a
1
=
0
u
a
8
=
u
u
a
7
=
u
4
c
2
u
3
c
2
+ u
4
c + 2c
2
u
2
+ 2u
3
c + c
2
u 2u
2
c c
2
3cu
u
4
c
2
u
3
c
2
+ u
4
c + 2c
2
u
2
+ 2u
3
c + c
2
u 2u
2
c c
2
3cu + c
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 8u 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
c
2
, c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
c
3
, c
4
, c
8
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
c
6
, c
7
, c
10
c
11
u
15
5u
13
+ ··· + u 1
c
9
u
15
10u
14
+ ··· 5u 1
c
12
u
15
+ 10u
14
+ ··· 5u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
c
2
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
c
3
, c
4
, c
8
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
c
6
, c
7
, c
10
c
11
y
15
10y
14
+ ··· 5y 1
c
9
, c
12
y
15
10y
14
+ ··· 25y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.21774
b = 1.21774
c = 0.015843 + 0.852735I
d = 0.57040 + 1.44998I
2.40108 3.48110
u = 1.21774
a = 1.21774
b = 1.21774
c = 0.015843 0.852735I
d = 0.57040 1.44998I
2.40108 3.48110
u = 1.21774
a = 1.21774
b = 1.21774
c = 1.67408
d = 0.501582
2.40108 3.48110
u = 0.309916 + 0.549911I
a = 0.309916 + 0.549911I
b = 0.309916 + 0.549911I
c = 1.20682 0.89411I
d = 0.186015 + 0.262335I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.309916 + 0.549911I
a = 0.309916 + 0.549911I
b = 0.309916 + 0.549911I
c = 0.209448 + 0.034081I
d = 0.122441 + 0.509500I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.309916 + 0.549911I
a = 0.309916 + 0.549911I
b = 0.309916 + 0.549911I
c = 0.55823 1.90023I
d = 1.24715 3.53209I
0.32910 1.53058I 2.51511 + 4.43065I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 0.549911I
a = 0.309916 0.549911I
b = 0.309916 0.549911I
c = 1.20682 + 0.89411I
d = 0.186015 0.262335I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.309916 0.549911I
a = 0.309916 0.549911I
b = 0.309916 0.549911I
c = 0.209448 0.034081I
d = 0.122441 0.509500I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.309916 0.549911I
a = 0.309916 0.549911I
b = 0.309916 0.549911I
c = 0.55823 + 1.90023I
d = 1.24715 + 3.53209I
0.32910 + 1.53058I 2.51511 4.43065I
u = 1.41878 + 0.21917I
a = 1.41878 + 0.21917I
b = 1.41878 + 0.21917I
c = 0.056392 1.024950I
d = 0.47615 1.68177I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.41878 + 0.21917I
a = 1.41878 + 0.21917I
b = 1.41878 + 0.21917I
c = 0.191710 + 0.838957I
d = 0.33588 + 1.40562I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.41878 + 0.21917I
a = 1.41878 + 0.21917I
b = 1.41878 + 0.21917I
c = 1.62491 0.02669I
d = 0.564775 + 0.063470I
5.87256 + 4.40083I 6.74431 3.49859I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41878 0.21917I
a = 1.41878 0.21917I
b = 1.41878 0.21917I
c = 0.056392 + 1.024950I
d = 0.47615 + 1.68177I
5.87256 4.40083I 6.74431 + 3.49859I
u = 1.41878 0.21917I
a = 1.41878 0.21917I
b = 1.41878 0.21917I
c = 0.191710 0.838957I
d = 0.33588 1.40562I
5.87256 4.40083I 6.74431 + 3.49859I
u = 1.41878 0.21917I
a = 1.41878 0.21917I
b = 1.41878 0.21917I
c = 1.62491 + 0.02669I
d = 0.564775 0.063470I
5.87256 4.40083I 6.74431 + 3.49859I
18
III. I
v
1
= ha, d v + 1, c + a, b + v 1, v
2
v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
11
=
0
v 1
a
6
=
0
v + 1
a
10
=
v
v 1
a
12
=
0
v 1
a
3
=
1
v
a
2
=
v + 1
v
a
1
=
0
v 1
a
8
=
v
0
a
7
=
0
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 5
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
8
c
11
, c
12
u
2
c
7
, c
9
(u + 1)
2
c
10
(u 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
8
c
11
, c
12
y
2
c
7
, c
9
, c
10
(y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0
d = 0.500000 + 0.866025I
1.64493 + 2.02988I 3.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0
d = 0.500000 0.866025I
1.64493 2.02988I 3.00000 + 3.46410I
22
IV. I
v
2
= ha, d, c v, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
11
=
v
0
a
6
=
0
v + 1
a
10
=
v
0
a
12
=
v
v 1
a
3
=
1
v
a
2
=
v + 1
v
a
1
=
0
v 1
a
8
=
v
0
a
7
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 7
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
, c
10
u
2
c
6
(u 1)
2
c
11
, c
12
(u + 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0.500000 + 0.866025I
d = 0
1.64493 2.02988I 9.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0.500000 0.866025I
d = 0
1.64493 + 2.02988I 9.00000 3.46410I
26
V. I
v
3
= hc, d + 1, b, a 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
5
=
1
0
a
11
=
0
1
a
6
=
1
0
a
10
=
1
1
a
12
=
1
1
a
3
=
1
0
a
2
=
1
0
a
1
=
1
0
a
8
=
1
0
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
u
c
6
, c
7
, c
9
c
12
u + 1
c
10
, c
11
u 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
y
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
30
VI. I
v
4
= ha, da cb + 1, dv + 1, cv ba + bv + a v, b
2
b + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
11
=
b + 1
d
a
6
=
0
b
a
10
=
b + v + 1
d
a
12
=
b + 1
d + b
a
3
=
1
b + 1
a
2
=
b
b + 1
a
1
=
0
b
a
8
=
v
0
a
7
=
b 1
d
(ii) Obstruction class = 1
(iii) Cusp Shapes = d
2
+ v
2
+ 4b 4
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
31
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
2.02988I 1.23207 3.46710I
32
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
· (u
47
+ 24u
46
+ ··· + 216u 16)
c
2
u(u
2
+ u + 1)
2
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
· (u
47
+ 2u
46
+ ··· + 16u + 4)
c
3
u(u
2
u + 1)
2
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
· (u
47
2u
46
+ ··· 21456u + 2592)
c
4
, c
8
u
5
(u
5
u
4
+ ··· + u + 1)
3
(u
47
+ 2u
46
+ ··· + 1024u + 512)
c
5
u(u
2
u + 1)
2
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
· (u
47
+ 2u
46
+ ··· + 16u + 4)
c
6
u
2
(u 1)
2
(u + 1)(u
15
5u
13
+ ··· + u 1)(u
47
8u
46
+ ··· + 56u + 16)
c
7
u
2
(u + 1)
3
(u
15
5u
13
+ ··· + u 1)(u
47
+ 8u
46
+ ··· + 56u + 16)
c
9
u
2
(u + 1)
3
(u
15
10u
14
+ ··· 5u 1)
· (u
47
14u
46
+ ··· + 6688u 256)
c
10
u
2
(u 1)
3
(u
15
5u
13
+ ··· + u 1)(u
47
+ 8u
46
+ ··· + 56u + 16)
c
11
u
2
(u 1)(u + 1)
2
(u
15
5u
13
+ ··· + u 1)(u
47
8u
46
+ ··· + 56u + 16)
c
12
u
2
(u + 1)
3
(u
15
+ 10u
14
+ ··· 5u + 1)
· (u
47
+ 54u
46
+ ··· + 544u + 256)
33
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
· (y
47
+ 48y
45
+ ··· + 67872y 256)
c
2
, c
5
y(y
2
+ y + 1)
2
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
· (y
47
+ 24y
46
+ ··· + 216y 16)
c
3
y(y
2
+ y + 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
47
24y
46
+ ··· + 353776896y 6718464)
c
4
, c
8
y
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
47
30y
46
+ ··· + 1572864y 262144)
c
6
, c
11
y
2
(y 1)
3
(y
15
10y
14
+ ··· 5y 1)
· (y
47
54y
46
+ ··· + 544y 256)
c
7
, c
10
y
2
(y 1)
3
(y
15
10y
14
+ ··· 5y 1)
· (y
47
14y
46
+ ··· + 6688y 256)
c
9
y
2
(y 1)
3
(y
15
10y
14
+ ··· 25y 1)
· (y
47
+ 46y
46
+ ··· + 11182592y 65536)
c
12
y
2
(y 1)
3
(y
15
10y
14
+ ··· 25y 1)
· (y
47
114y
46
+ ··· 1990144y 65536)
34