12n
0060
(K12n
0060
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 11 8 6 11
Solving Sequence
4,9 5,11 6,10
12 3 2 1 8 7
c
4
c
9
c
11
c
3
c
2
c
1
c
8
c
7
c
5
, c
6
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.71438 × 10
84
u
46
− 3.94862 × 10
84
u
45
+ ··· + 5.11546 × 10
87
d + 5.51326 × 10
87
,
1.81915 × 10
85
u
46
− 2.40556 × 10
85
u
45
+ ··· + 1.27887 × 10
87
c + 1.47462 × 10
88
,
− 7.84763 × 10
95
u
46
+ 5.19621 × 10
95
u
45
+ ··· + 6.09681 × 10
98
b − 4.85317 × 10
98
,
− 1.61790 × 10
97
u
46
+ 2.28917 × 10
97
u
45
+ ··· + 6.09681 × 10
98
a − 1.26868 × 10
100
,
u
47
− 2u
46
+ ··· + 1024u − 512i
I
u
2
= hu
4
c
2
+ u
3
c
2
− u
4
c − 2c
2
u
2
− 2u
3
c − c
2
u + u
2
c + c
2
+ 3cu + d − c,
− 2u
4
c
2
− 2u
3
c
2
+ u
4
c + 4c
2
u
2
+ 2u
3
c + c
3
+ 2c
2
u − u
2
c − 2c
2
− 3cu − u, b − u, a − u,
u
5
+ u
4
− 2u
3
− u
2
+ u − 1i
I
v
1
= ha, d − v + 1, c + a, b + v − 1, v
2
− v + 1i
I
v
2
= ha, d, c − v, b − v − 1, v
2
+ v + 1i
I
v
3
= hc, d + 1, b, a − 1, v − 1i
I
v
4
= ha, da − cb + 1, dv + 1, cv − ba + bv + a − v, b
2
− b + 1i
* 5 irreducible components of dim
C
= 0, with total 67 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1