12n
0061
(K12n
0061
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 7 9 1 7
Solving Sequence
4,9 5,7 10,12
1 6 3 2 8 11
c
4
c
9
c
12
c
6
c
3
c
2
c
8
c
11
c
1
, c
5
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.70930 × 10
96
u
46
9.84287 × 10
96
u
45
+ ··· + 6.09681 × 10
98
d 6.16018 × 10
99
,
1.03963 × 10
97
u
46
1.48428 × 10
97
u
45
+ ··· + 3.04841 × 10
98
c 8.34618 × 10
99
,
3.55708 × 10
84
u
46
5.87581 × 10
84
u
45
+ ··· + 4.44856 × 10
87
b 3.91588 × 10
87
,
2.90225 × 10
85
u
46
+ 4.18154 × 10
85
u
45
+ ··· + 4.44856 × 10
87
a + 2.35085 × 10
88
,
u
47
+ 2u
46
+ ··· + 1024u + 512i
I
u
2
= ha
2
u + d a, a
2
u + c, a
2
u + b a, u
4
a + 2u
3
a u
4
+ a
3
+ u
2
a + u
3
3au + 2u
2
u 1,
u
5
u
4
2u
3
+ u
2
+ u + 1i
I
v
1
= hc, d v + 1, b, a v, v
2
v + 1i
I
v
2
= ha, d + v + 1, c + a, b v 1, v
2
+ v + 1i
I
v
3
= ha, d 1, c + a 1, b + 1, v 1i
I
v
4
= ha, d
2
+ 2db + b
2
+ d + b + 1, dc dv + 2cb + ba av + c + a v + 2, da cb 1,
a
2
v
2
cav a
2
v + v
2
a + c
2
+ 2ca 2cv + a
2
2av + v
2
, bv + 1i
* 5 irreducible components of dim
C
= 0, with total 67 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.71 × 10
96
u
46
9.84 × 10
96
u
45
+ · · · + 6.10 × 10
98
d 6.16 ×
10
99
, 1.04×10
97
u
46
1.48×10
97
u
45
+· · ·+3.05×10
98
c8.35×10
99
, 3.56×
10
84
u
46
5.88 × 10
84
u
45
+ · · · + 4.45 × 10
87
b 3.92 × 10
87
, 2.90 × 10
85
u
46
+
4.18×10
85
u
45
+· · ·+4.45 × 10
87
a+2.35 × 10
88
, u
47
+2u
46
+· · ·+1024u + 512i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
7
=
0.00652403u
46
0.00939975u
45
+ ··· 0.175259u 5.28451
0.000799603u
46
+ 0.00132083u
45
+ ··· + 1.47622u + 0.880259
a
10
=
0.00732363u
46
+ 0.0107206u
45
+ ··· + 1.65147u + 6.16477
0.000799603u
46
+ 0.00132083u
45
+ ··· + 1.47622u + 0.880259
a
12
=
0.0341039u
46
+ 0.0486904u
45
+ ··· + 14.6818u + 27.3788
0.0110046u
46
+ 0.0161443u
45
+ ··· + 4.15721u + 10.1039
a
1
=
0.0252497u
46
+ 0.0366947u
45
+ ··· + 11.3108u + 20.0129
0.00558802u
46
+ 0.00914935u
45
+ ··· + 0.890394u + 6.27203
a
6
=
0.0265369u
46
0.0375470u
45
+ ··· 11.6287u 20.8089
0.00128717u
46
0.000852284u
45
+ ··· 0.317834u 0.796018
a
3
=
0.00513208u
46
+ 0.00817440u
45
+ ··· 0.763266u + 5.03316
0.00862965u
46
+ 0.0123123u
45
+ ··· + 4.96716u + 7.59297
a
2
=
0.00521744u
46
0.00448641u
45
+ ··· 6.21813u 1.48986
0.00291266u
46
+ 0.00502319u
45
+ ··· + 2.03496u + 3.47740
a
8
=
u
u
a
11
=
0.00732363u
46
+ 0.0107206u
45
+ ··· + 1.65147u + 6.16477
0.00275888u
46
+ 0.00400645u
45
+ ··· + 1.74743u + 2.89071
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0132573u
46
+ 0.0100723u
45
+ ··· + 23.2337u 1.69873
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 24u
46
+ ··· + 216u 16
c
2
, c
5
u
47
+ 2u
46
+ ··· + 16u + 4
c
3
u
47
2u
46
+ ··· 21456u + 2592
c
4
, c
8
u
47
+ 2u
46
+ ··· + 1024u + 512
c
6
, c
12
u
47
+ 8u
46
+ ··· + 56u + 16
c
7
, c
9
u
47
8u
46
+ ··· + 56u + 16
c
10
u
47
+ 54u
46
+ ··· + 544u + 256
c
11
u
47
14u
46
+ ··· + 6688u 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 48y
45
+ ··· + 67872y 256
c
2
, c
5
y
47
+ 24y
46
+ ··· + 216y 16
c
3
y
47
24y
46
+ ··· + 353776896y 6718464
c
4
, c
8
y
47
30y
46
+ ··· + 1572864y 262144
c
6
, c
12
y
47
14y
46
+ ··· + 6688y 256
c
7
, c
9
y
47
54y
46
+ ··· + 544y 256
c
10
y
47
114y
46
+ ··· 1990144y 65536
c
11
y
47
+ 46y
46
+ ··· + 11182592y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.168857 + 0.977277I
a = 0.502467 + 0.614921I
b = 1.127600 + 0.633374I
c = 0.961290 + 0.734797I
d = 0.756569 + 0.908522I
0.50019 4.79223I 2.43501 + 7.48976I
u = 0.168857 0.977277I
a = 0.502467 0.614921I
b = 1.127600 0.633374I
c = 0.961290 0.734797I
d = 0.756569 0.908522I
0.50019 + 4.79223I 2.43501 7.48976I
u = 0.758370 + 0.572620I
a = 0.677402 0.992682I
b = 0.306606 + 0.328751I
c = 0.587766 + 0.872152I
d = 0.654201 + 0.089268I
3.62778 + 1.19000I 10.45074 1.01195I
u = 0.758370 0.572620I
a = 0.677402 + 0.992682I
b = 0.306606 0.328751I
c = 0.587766 0.872152I
d = 0.654201 0.089268I
3.62778 1.19000I 10.45074 + 1.01195I
u = 0.798854 + 0.256222I
a = 0.588853 + 0.419968I
b = 0.579476 0.018798I
c = 0.544662 1.097250I
d = 0.20396 1.54472I
1.43042 3.68269I 0.57615 + 8.67104I
u = 0.798854 0.256222I
a = 0.588853 0.419968I
b = 0.579476 + 0.018798I
c = 0.544662 + 1.097250I
d = 0.20396 + 1.54472I
1.43042 + 3.68269I 0.57615 8.67104I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.287114 + 0.709757I
a = 0.383641 + 0.556567I
b = 0.733419 + 0.549353I
c = 1.205770 + 0.404495I
d = 0.597302 + 0.839395I
1.71355 + 0.99880I 4.04476 2.43406I
u = 0.287114 0.709757I
a = 0.383641 0.556567I
b = 0.733419 0.549353I
c = 1.205770 0.404495I
d = 0.597302 0.839395I
1.71355 0.99880I 4.04476 + 2.43406I
u = 0.723521 + 0.092490I
a = 0.704709 + 0.351766I
b = 0.480781 0.041433I
c = 3.56166 + 1.78408I
d = 1.048200 + 0.427037I
0.84436 + 2.80891I 4.36866 6.45196I
u = 0.723521 0.092490I
a = 0.704709 0.351766I
b = 0.480781 + 0.041433I
c = 3.56166 1.78408I
d = 1.048200 0.427037I
0.84436 2.80891I 4.36866 + 6.45196I
u = 0.549584 + 0.433005I
a = 0.450542 + 0.396109I
b = 0.579765 + 0.179992I
c = 2.21899 + 0.55940I
d = 0.703512 + 0.579046I
2.18982 + 0.74670I 2.91211 + 1.96105I
u = 0.549584 0.433005I
a = 0.450542 0.396109I
b = 0.579765 0.179992I
c = 2.21899 0.55940I
d = 0.703512 0.579046I
2.18982 0.74670I 2.91211 1.96105I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.659997 + 0.157577I
a = 0.620233 + 0.304010I
b = 0.486762 + 0.009061I
c = 0.225348 0.901957I
d = 0.488745 1.323290I
1.05099 1.22135I 3.11104 2.86511I
u = 0.659997 0.157577I
a = 0.620233 0.304010I
b = 0.486762 0.009061I
c = 0.225348 + 0.901957I
d = 0.488745 + 1.323290I
1.05099 + 1.22135I 3.11104 + 2.86511I
u = 0.226818 + 1.310000I
a = 0.108597 1.104710I
b = 0.068409 + 0.532975I
c = 0.830749 0.602517I
d = 1.046880 0.665279I
4.12204 2.83071I 3.10594 + 2.47522I
u = 0.226818 1.310000I
a = 0.108597 + 1.104710I
b = 0.068409 0.532975I
c = 0.830749 + 0.602517I
d = 1.046880 + 0.665279I
4.12204 + 2.83071I 3.10594 2.47522I
u = 0.024914 + 0.666306I
a = 0.311476 + 0.943178I
b = 0.68322 + 1.48591I
c = 0.472994 + 0.671049I
d = 0.54160 + 1.46349I
0.68586 + 1.51893I 2.03699 + 0.09471I
u = 0.024914 0.666306I
a = 0.311476 0.943178I
b = 0.68322 1.48591I
c = 0.472994 0.671049I
d = 0.54160 1.46349I
0.68586 1.51893I 2.03699 0.09471I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.275400 + 0.425723I
a = 0.527825 + 0.529108I
b = 0.767343 0.182692I
c = 1.00554 1.01478I
d = 1.17436 1.26704I
1.49383 5.48046I 1.24533 + 5.03878I
u = 1.275400 0.425723I
a = 0.527825 0.529108I
b = 0.767343 + 0.182692I
c = 1.00554 + 1.01478I
d = 1.17436 + 1.26704I
1.49383 + 5.48046I 1.24533 5.03878I
u = 1.351470 + 0.126259I
a = 1.098230 + 0.058069I
b = 2.73978 + 0.07859I
c = 0.428611 + 0.687312I
d = 0.23689 + 2.41586I
5.10242 + 0.08441I 6.12902 + 0.I
u = 1.351470 0.126259I
a = 1.098230 0.058069I
b = 2.73978 0.07859I
c = 0.428611 0.687312I
d = 0.23689 2.41586I
5.10242 0.08441I 6.12902 + 0.I
u = 0.062543 + 0.611080I
a = 0.14897 1.86717I
b = 0.025679 + 0.284490I
c = 3.03261 + 4.80458I
d = 0.366383 1.198400I
0.53961 2.33649I 0.16377 + 3.97632I
u = 0.062543 0.611080I
a = 0.14897 + 1.86717I
b = 0.025679 0.284490I
c = 3.03261 4.80458I
d = 0.366383 + 1.198400I
0.53961 + 2.33649I 0.16377 3.97632I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.354510 + 0.305217I
a = 1.072310 + 0.133945I
b = 2.69315 + 0.17757I
c = 0.777654 + 0.758804I
d = 0.87546 + 2.59578I
4.74548 + 5.93381I 5.07129 5.57342I
u = 1.354510 0.305217I
a = 1.072310 0.133945I
b = 2.69315 0.17757I
c = 0.777654 0.758804I
d = 0.87546 2.59578I
4.74548 5.93381I 5.07129 + 5.57342I
u = 1.42975 + 0.19774I
a = 0.527124 + 0.570614I
b = 0.714333 0.280041I
c = 0.985847 0.867635I
d = 1.15748 0.96588I
5.91128 + 1.72117I 6.79419 + 0.I
u = 1.42975 0.19774I
a = 0.527124 0.570614I
b = 0.714333 + 0.280041I
c = 0.985847 + 0.867635I
d = 1.15748 + 0.96588I
5.91128 1.72117I 6.79419 + 0.I
u = 0.01170 + 1.48787I
a = 0.004491 1.046020I
b = 0.003311 + 0.582025I
c = 0.374959 0.326873I
d = 1.076620 0.549413I
8.14593 1.35024I 0
u = 0.01170 1.48787I
a = 0.004491 + 1.046020I
b = 0.003311 0.582025I
c = 0.374959 + 0.326873I
d = 1.076620 + 0.549413I
8.14593 + 1.35024I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.509235
a = 1.62785
b = 0.278429
c = 1.42620
d = 0.0709079
1.19981 8.75910
u = 1.38697 + 0.55724I
a = 0.508516 + 0.527555I
b = 0.834857 0.205621I
c = 1.10528 1.01088I
d = 1.36984 1.26145I
4.40802 + 10.56830I 0
u = 1.38697 0.55724I
a = 0.508516 0.527555I
b = 0.834857 + 0.205621I
c = 1.10528 + 1.01088I
d = 1.36984 + 1.26145I
4.40802 10.56830I 0
u = 0.40359 + 1.45989I
a = 0.149185 1.016750I
b = 0.114536 + 0.582400I
c = 0.560529 0.949843I
d = 1.124480 0.685590I
7.37650 + 7.69255I 0
u = 0.40359 1.45989I
a = 0.149185 + 1.016750I
b = 0.114536 0.582400I
c = 0.560529 + 0.949843I
d = 1.124480 + 0.685590I
7.37650 7.69255I 0
u = 1.43182 + 0.71566I
a = 0.954104 + 0.236457I
b = 2.50037 + 0.27104I
c = 1.42231 + 0.42095I
d = 2.09633 + 2.01103I
7.91018 + 10.04820I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43182 0.71566I
a = 0.954104 0.236457I
b = 2.50037 0.27104I
c = 1.42231 0.42095I
d = 2.09633 2.01103I
7.91018 10.04820I 0
u = 1.55076 + 0.46120I
a = 0.979860 + 0.150029I
b = 2.56948 + 0.17354I
c = 0.0100774 + 0.0710674I
d = 0.347517 0.964881I
10.01530 3.44751I 0
u = 1.55076 0.46120I
a = 0.979860 0.150029I
b = 2.56948 0.17354I
c = 0.0100774 0.0710674I
d = 0.347517 + 0.964881I
10.01530 + 3.44751I 0
u = 1.43192 + 0.83141I
a = 0.924993 + 0.257013I
b = 2.45089 + 0.28141I
c = 1.54648 + 0.31162I
d = 2.32957 + 1.80759I
10.6565 15.7212I 0
u = 1.43192 0.83141I
a = 0.924993 0.257013I
b = 2.45089 0.28141I
c = 1.54648 0.31162I
d = 2.32957 1.80759I
10.6565 + 15.7212I 0
u = 1.59024 + 0.63743I
a = 0.938344 + 0.185530I
b = 2.50574 + 0.19991I
c = 0.028561 + 0.229108I
d = 0.361646 0.685663I
13.2358 + 8.9369I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59024 0.63743I
a = 0.938344 0.185530I
b = 2.50574 0.19991I
c = 0.028561 0.229108I
d = 0.361646 + 0.685663I
13.2358 8.9369I 0
u = 1.61640 + 0.61957I
a = 0.936055 + 0.176897I
b = 2.50694 + 0.18872I
c = 1.188010 + 0.269021I
d = 1.66723 + 1.72517I
13.4084 6.2441I 0
u = 1.61640 0.61957I
a = 0.936055 0.176897I
b = 2.50694 0.18872I
c = 1.188010 0.269021I
d = 1.66723 1.72517I
13.4084 + 6.2441I 0
u = 1.74703 + 0.30124I
a = 0.947443 + 0.082473I
b = 2.55085 + 0.08714I
c = 0.250062 + 0.065643I
d = 0.059801 1.037630I
14.9547 0.9173I 0
u = 1.74703 0.30124I
a = 0.947443 0.082473I
b = 2.55085 0.08714I
c = 0.250062 0.065643I
d = 0.059801 + 1.037630I
14.9547 + 0.9173I 0
12
II. I
u
2
= ha
2
u + d a, a
2
u + c, a
2
u + b a, u
4
a u
4
+ · · · + a
3
1, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
7
=
a
a
2
u + a
a
10
=
a
2
u
a
2
u + a
a
12
=
a
2
u
a
2
u + a
a
1
=
0
u
a
6
=
u
u
a
3
=
u
2
+ 1
u
2
a
2
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 2u + 1
a
8
=
u
u
a
11
=
a
2
u
u
3
a
2
a
2
u + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
8u 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
c
2
, c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
c
3
, c
4
, c
8
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
c
6
, c
7
, c
9
c
12
u
15
5u
13
+ ··· + u 1
c
10
u
15
+ 10u
14
+ ··· 5u + 1
c
11
u
15
10u
14
+ ··· 5u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
c
2
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
c
3
, c
4
, c
8
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
c
6
, c
7
, c
9
c
12
y
15
10y
14
+ ··· 5y 1
c
10
, c
11
y
15
10y
14
+ ··· 25y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.586248 + 0.597241I
b = 0.602091 0.255494I
c = 0.015843 0.852735I
d = 0.602091 0.255494I
2.40108 3.48110
u = 1.21774
a = 0.586248 0.597241I
b = 0.602091 + 0.255494I
c = 0.015843 + 0.852735I
d = 0.602091 + 0.255494I
2.40108 3.48110
u = 1.21774
a = 1.17250
b = 2.84657
c = 1.67408
d = 2.84657
2.40108 3.48110
u = 0.309916 + 0.549911I
a = 0.331889 + 0.475420I
b = 0.541336 + 0.441339I
c = 0.209448 0.034081I
d = 0.541336 + 0.441339I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.309916 + 0.549911I
a = 1.02081 + 1.15644I
b = 2.22763 + 2.05055I
c = 1.20682 + 0.89411I
d = 2.22763 + 2.05055I
0.32910 + 1.53058I 2.51511 4.43065I
u = 0.309916 + 0.549911I
a = 0.68892 1.63186I
b = 0.130685 + 0.268368I
c = 0.55823 + 1.90023I
d = 0.130685 + 0.268368I
0.32910 + 1.53058I 2.51511 4.43065I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 0.549911I
a = 0.331889 0.475420I
b = 0.541336 0.441339I
c = 0.209448 + 0.034081I
d = 0.541336 0.441339I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.309916 0.549911I
a = 1.02081 1.15644I
b = 2.22763 2.05055I
c = 1.20682 0.89411I
d = 2.22763 2.05055I
0.32910 1.53058I 2.51511 + 4.43065I
u = 0.309916 0.549911I
a = 0.68892 + 1.63186I
b = 0.130685 0.268368I
c = 0.55823 1.90023I
d = 0.130685 0.268368I
0.32910 1.53058I 2.51511 + 4.43065I
u = 1.41878 + 0.21917I
a = 1.060130 + 0.090162I
b = 2.68504 + 0.11685I
c = 1.62491 + 0.02669I
d = 2.68504 + 0.11685I
5.87256 4.40083I 6.74431 + 3.49859I
u = 1.41878 + 0.21917I
a = 0.532546 0.656825I
b = 0.588938 + 0.368121I
c = 0.056392 + 1.024950I
d = 0.588938 + 0.368121I
5.87256 4.40083I 6.74431 + 3.49859I
u = 1.41878 + 0.21917I
a = 0.527587 + 0.566662I
b = 0.719297 0.272295I
c = 0.191710 0.838957I
d = 0.719297 0.272295I
5.87256 4.40083I 6.74431 + 3.49859I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41878 0.21917I
a = 1.060130 0.090162I
b = 2.68504 0.11685I
c = 1.62491 0.02669I
d = 2.68504 0.11685I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.41878 0.21917I
a = 0.532546 + 0.656825I
b = 0.588938 0.368121I
c = 0.056392 1.024950I
d = 0.588938 0.368121I
5.87256 + 4.40083I 6.74431 3.49859I
u = 1.41878 0.21917I
a = 0.527587 0.566662I
b = 0.719297 + 0.272295I
c = 0.191710 + 0.838957I
d = 0.719297 + 0.272295I
5.87256 + 4.40083I 6.74431 3.49859I
18
III. I
v
1
= hc, d v + 1, b, a v, v
2
v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
v
0
a
10
=
v
0
a
12
=
0
v 1
a
1
=
v
v 1
a
6
=
v
v + 1
a
3
=
0
v
a
2
=
v
v
a
8
=
v
0
a
11
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 5
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
, c
10
u
2
c
6
, c
11
(u + 1)
2
c
12
(u 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0
c = 0
d = 0.500000 + 0.866025I
1.64493 + 2.02988I 3.00000 3.46410I
v = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0
c = 0
d = 0.500000 0.866025I
1.64493 2.02988I 3.00000 + 3.46410I
22
IV. I
v
2
= ha, d + v + 1, c + a, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
0
v + 1
a
10
=
v
v 1
a
12
=
0
v 1
a
1
=
0
v 1
a
6
=
0
v + 1
a
3
=
1
v
a
2
=
v + 1
v
a
8
=
v
0
a
11
=
0
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 7
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
8
c
11
, c
12
u
2
c
7
(u 1)
2
c
9
, c
10
(u + 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
8
c
11
, c
12
y
2
c
7
, c
9
, c
10
(y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0
d = 0.500000 0.866025I
1.64493 2.02988I 9.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0
d = 0.500000 + 0.866025I
1.64493 + 2.02988I 9.00000 3.46410I
26
V. I
v
3
= ha, d 1, c + a 1, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
5
=
1
0
a
7
=
0
1
a
10
=
1
1
a
12
=
1
1
a
1
=
1
0
a
6
=
1
0
a
3
=
1
0
a
2
=
1
0
a
8
=
1
0
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
u
c
6
, c
7
u 1
c
9
, c
10
, c
11
c
12
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
y
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
0 0
30
VI. I
v
4
= ha, d
2
+ 2db + · · · + b + 1, dv av + · · · + a + 2, da cb
1, a
2
v
2
+ v
2
a + · · · + 2ca + a
2
, bv + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
0
b
a
10
=
v
b
a
12
=
v
d
a
1
=
v
d + b
a
6
=
v
d + b
a
3
=
dv + 2
d + b + 1
a
2
=
dv d b + 1
d + b + 1
a
8
=
v
0
a
11
=
0
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = b
2
+ v
2
4d 4b 4
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
31
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
2.02988I 1.30108 + 3.68445I
32
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
3
· (u
47
+ 24u
46
+ ··· + 216u 16)
c
2
u(u
2
+ u + 1)
2
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
· (u
47
+ 2u
46
+ ··· + 16u + 4)
c
3
u(u
2
u + 1)
2
(u
5
u
4
2u
3
+ u
2
+ u + 1)
3
· (u
47
2u
46
+ ··· 21456u + 2592)
c
4
, c
8
u
5
(u
5
u
4
+ ··· + u + 1)
3
(u
47
+ 2u
46
+ ··· + 1024u + 512)
c
5
u(u
2
u + 1)
2
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
3
· (u
47
+ 2u
46
+ ··· + 16u + 4)
c
6
u
2
(u 1)(u + 1)
2
(u
15
5u
13
+ ··· + u 1)(u
47
+ 8u
46
+ ··· + 56u + 16)
c
7
u
2
(u 1)
3
(u
15
5u
13
+ ··· + u 1)(u
47
8u
46
+ ··· + 56u + 16)
c
9
u
2
(u + 1)
3
(u
15
5u
13
+ ··· + u 1)(u
47
8u
46
+ ··· + 56u + 16)
c
10
u
2
(u + 1)
3
(u
15
+ 10u
14
+ ··· 5u + 1)
· (u
47
+ 54u
46
+ ··· + 544u + 256)
c
11
u
2
(u + 1)
3
(u
15
10u
14
+ ··· 5u 1)
· (u
47
14u
46
+ ··· + 6688u 256)
c
12
u
2
(u 1)
2
(u + 1)(u
15
5u
13
+ ··· + u 1)(u
47
+ 8u
46
+ ··· + 56u + 16)
33
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
3
· (y
47
+ 48y
45
+ ··· + 67872y 256)
c
2
, c
5
y(y
2
+ y + 1)
2
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
3
· (y
47
+ 24y
46
+ ··· + 216y 16)
c
3
y(y
2
+ y + 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
47
24y
46
+ ··· + 353776896y 6718464)
c
4
, c
8
y
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
47
30y
46
+ ··· + 1572864y 262144)
c
6
, c
12
y
2
(y 1)
3
(y
15
10y
14
+ ··· 5y 1)
· (y
47
14y
46
+ ··· + 6688y 256)
c
7
, c
9
y
2
(y 1)
3
(y
15
10y
14
+ ··· 5y 1)
· (y
47
54y
46
+ ··· + 544y 256)
c
10
y
2
(y 1)
3
(y
15
10y
14
+ ··· 25y 1)
· (y
47
114y
46
+ ··· 1990144y 65536)
c
11
y
2
(y 1)
3
(y
15
10y
14
+ ··· 25y 1)
· (y
47
+ 46y
46
+ ··· + 11182592y 65536)
34