12n
0063
(K12n
0063
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 5 7 8 1 7
Solving Sequence
5,8 9,10 3,11
2 6 1 4 7 12
c
8
c
10
c
2
c
5
c
1
c
4
c
7
c
12
c
3
, c
6
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h211450298892949u
15
− 665970623055347u
14
+ ··· + 44568754122034192d + 9319091588527888,
40959130934865u
15
− 340344314483579u
14
+ ··· + 89137508244068384c − 71636506057825568,
1.48020 × 10
15
u
15
− 5.08467 × 10
15
u
14
+ ··· + 4.45688 × 10
16
b − 3.24669 × 10
16
,
299188489544621u
15
− 2300420730722931u
14
+ ··· + 89137508244068384a + 5859054368972672,
u
16
− 3u
15
+ ··· − 64u + 32i
I
u
2
= h109u
7
c − 121u
7
+ ··· − 2066c + 3882, 9443u
7
c − 4639u
7
+ ··· − 14966c + 1182,
165u
7
+ 651u
6
− 137u
5
− 3762u
4
− 1020u
3
+ 3809u
2
+ 6184b − 3983u − 234,
1393u
7
+ 1111u
6
− 10189u
5
− 3314u
4
+ 26244u
3
− 12555u
2
+ 12368a − 24219u + 1510,
u
8
+ u
7
− 7u
6
− 4u
5
+ 16u
4
− 3u
3
− 9u
2
− 8u − 4i
I
v
1
= ha, d, c − 1, b + v, v
2
− v + 1i
I
v
2
= ha, d + 1, av + c − a, b + v, v
2
− v + 1i
I
v
3
= hc, d + 1, b, a + 1, v + 1i
I
v
4
= hc, d + 1, −v
2
ba + v
3
b − v
2
b + av − v
2
+ c − 1, b
2
v
2
− bv + 1i
* 5 irreducible components of dim
C
= 0, with total 37 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1