12n
0063
(K12n
0063
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 5 7 8 1 7
Solving Sequence
5,8 9,10 3,11
2 6 1 4 7 12
c
8
c
10
c
2
c
5
c
1
c
4
c
7
c
12
c
3
, c
6
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h211450298892949u
15
665970623055347u
14
+ ··· + 44568754122034192d + 9319091588527888,
40959130934865u
15
340344314483579u
14
+ ··· + 89137508244068384c 71636506057825568,
1.48020 × 10
15
u
15
5.08467 × 10
15
u
14
+ ··· + 4.45688 × 10
16
b 3.24669 × 10
16
,
299188489544621u
15
2300420730722931u
14
+ ··· + 89137508244068384a + 5859054368972672,
u
16
3u
15
+ ··· 64u + 32i
I
u
2
= h109u
7
c 121u
7
+ ··· 2066c + 3882, 9443u
7
c 4639u
7
+ ··· 14966c + 1182,
165u
7
+ 651u
6
137u
5
3762u
4
1020u
3
+ 3809u
2
+ 6184b 3983u 234,
1393u
7
+ 1111u
6
10189u
5
3314u
4
+ 26244u
3
12555u
2
+ 12368a 24219u + 1510,
u
8
+ u
7
7u
6
4u
5
+ 16u
4
3u
3
9u
2
8u 4i
I
v
1
= ha, d, c 1, b + v, v
2
v + 1i
I
v
2
= ha, d + 1, av + c a, b + v, v
2
v + 1i
I
v
3
= hc, d + 1, b, a + 1, v + 1i
I
v
4
= hc, d + 1, v
2
ba + v
3
b v
2
b + av v
2
+ c 1, b
2
v
2
bv + 1i
* 5 irreducible components of dim
C
= 0, with total 37 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.11 × 10
14
u
15
6.66 × 10
14
u
14
+ · · · + 4.46 × 10
16
d + 9.32 ×
10
15
, 4.10 × 10
13
u
15
3.40 × 10
14
u
14
+ · · · + 8.91 × 10
16
c 7.16 × 10
16
, 1.48 ×
10
15
u
15
5.08 × 10
15
u
14
+ · · · + 4.46 × 10
16
b 3.25 × 10
16
, 2.99 × 10
14
u
15
2.30 × 10
15
u
14
+ · · · + 8.91 × 10
16
a + 5.86 × 10
15
, u
16
3u
15
+ · · · 64u + 32i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
0.000459505u
15
+ 0.00381819u
14
+ ··· + 0.107302u + 0.803663
0.00474436u
15
+ 0.0149425u
14
+ ··· 0.0874996u 0.209095
a
3
=
0.00335648u
15
+ 0.0258076u
14
+ ··· 1.58963u 0.0657305
0.0332117u
15
+ 0.114086u
14
+ ··· 5.13514u + 0.728469
a
11
=
0.00520387u
15
+ 0.0187607u
14
+ ··· + 0.0198025u + 0.594568
0.00474436u
15
+ 0.0149425u
14
+ ··· 0.0874996u 0.209095
a
2
=
0.00335648u
15
+ 0.0258076u
14
+ ··· 1.58963u 0.0657305
0.0222088u
15
+ 0.0813473u
14
+ ··· 4.02050u + 0.224849
a
6
=
0.0135509u
15
+ 0.0301119u
14
+ ··· + 0.340570u 1.37215
0.0269546u
15
+ 0.0690284u
14
+ ··· + 1.04739u 1.50134
a
1
=
0.0142293u
15
+ 0.0443303u
14
+ ··· + 0.947808u 0.466505
0.0277802u
15
+ 0.0744421u
14
+ ··· + 1.28838u 1.83865
a
4
=
u
u
3
+ u
a
7
=
0.000459505u
15
+ 0.00381819u
14
+ ··· + 0.107302u + 0.803663
0.00677644u
15
0.0186134u
14
+ ··· + 0.258343u + 0.131025
a
12
=
0.0137698u
15
+ 0.0405121u
14
+ ··· + 0.840506u 0.270168
0.0230359u
15
+ 0.0594996u
14
+ ··· + 1.37588u 1.62956
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3870228309913117
22284377061017096
u
15
2739800330771103
5571094265254274
u
14
+ ··· +
43609984858099500
2785547132627137
u +
900447030377212
2785547132627137
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 9u
15
+ ··· 24u + 16
c
2
, c
5
u
16
+ u
15
+ ··· 8u + 4
c
3
u
16
u
15
+ ··· 984u + 612
c
4
, c
8
u
16
+ 3u
15
+ ··· + 64u + 32
c
6
, c
7
, c
9
c
10
, c
12
u
16
+ 5u
15
+ ··· + u + 1
c
11
u
16
u
15
+ ··· + 9u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
3y
15
+ ··· + 1248y + 256
c
2
, c
5
y
16
+ 9y
15
+ ··· 24y + 16
c
3
y
16
15y
15
+ ··· + 193320y + 374544
c
4
, c
8
y
16
15y
15
+ ··· + 5120y + 1024
c
6
, c
7
, c
9
c
10
, c
12
y
16
y
15
+ ··· + 9y + 1
c
11
y
16
+ 39y
15
+ ··· + 25y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.289911 + 0.801405I
a = 0.044341 + 0.672495I
b = 0.167547 + 0.706079I
c = 0.654021 + 0.248004I
d = 0.336785 + 0.506907I
0.321814 1.225450I 4.70206 + 4.90073I
u = 0.289911 0.801405I
a = 0.044341 0.672495I
b = 0.167547 0.706079I
c = 0.654021 0.248004I
d = 0.336785 0.506907I
0.321814 + 1.225450I 4.70206 4.90073I
u = 1.139570 + 0.424244I
a = 0.835279 0.536067I
b = 0.871046 0.172594I
c = 0.589120 0.792720I
d = 0.396064 0.812657I
0.71555 3.67228I 1.72542 + 4.33532I
u = 1.139570 0.424244I
a = 0.835279 + 0.536067I
b = 0.871046 + 0.172594I
c = 0.589120 + 0.792720I
d = 0.396064 + 0.812657I
0.71555 + 3.67228I 1.72542 4.33532I
u = 0.575594 + 0.321074I
a = 0.193970 + 1.376780I
b = 0.333506 + 0.445900I
c = 1.017480 + 0.434986I
d = 0.169050 + 0.355242I
0.11872 1.44911I 0.36516 + 2.80335I
u = 0.575594 0.321074I
a = 0.193970 1.376780I
b = 0.333506 0.445900I
c = 1.017480 0.434986I
d = 0.169050 0.355242I
0.11872 + 1.44911I 0.36516 2.80335I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.067191 + 0.531573I
a = 1.65593 0.85713I
b = 3.05755 2.07892I
c = 0.547892 + 0.020957I
d = 0.822510 + 0.069711I
2.85279 2.27613I 11.67196 + 3.94896I
u = 0.067191 0.531573I
a = 1.65593 + 0.85713I
b = 3.05755 + 2.07892I
c = 0.547892 0.020957I
d = 0.822510 0.069711I
2.85279 + 2.27613I 11.67196 3.94896I
u = 0.33229 + 1.72297I
a = 0.700117 + 0.318420I
b = 1.01451 + 1.11512I
c = 0.412801 0.282825I
d = 0.648602 1.129520I
4.26031 + 4.58330I 1.71878 4.05752I
u = 0.33229 1.72297I
a = 0.700117 0.318420I
b = 1.01451 1.11512I
c = 0.412801 + 0.282825I
d = 0.648602 + 1.129520I
4.26031 4.58330I 1.71878 + 4.05752I
u = 1.81588 + 0.68377I
a = 0.560451 0.078372I
b = 0.088006 0.453655I
c = 0.227904 + 0.980118I
d = 1.22507 + 0.96795I
6.64229 + 8.00732I 6.00576 3.88395I
u = 1.81588 0.68377I
a = 0.560451 + 0.078372I
b = 0.088006 + 0.453655I
c = 0.227904 0.980118I
d = 1.22507 0.96795I
6.64229 8.00732I 6.00576 + 3.88395I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72439 + 0.95526I
a = 0.028668 0.723076I
b = 0.46994 2.77688I
c = 0.389017 0.972862I
d = 1.35436 0.88620I
9.8252 14.1242I 4.39428 + 6.97100I
u = 1.72439 0.95526I
a = 0.028668 + 0.723076I
b = 0.46994 + 2.77688I
c = 0.389017 + 0.972862I
d = 1.35436 + 0.88620I
9.8252 + 14.1242I 4.39428 6.97100I
u = 2.26504 + 0.41669I
a = 0.259518 + 0.593001I
b = 0.70502 + 2.50841I
c = 0.104392 0.792584I
d = 1.16335 1.24018I
12.28130 3.00558I 2.14690 + 1.40998I
u = 2.26504 0.41669I
a = 0.259518 0.593001I
b = 0.70502 2.50841I
c = 0.104392 + 0.792584I
d = 1.16335 + 1.24018I
12.28130 + 3.00558I 2.14690 1.40998I
7
II. I
u
2
= h109cu
7
121u
7
+ · · · 2066c + 3882, 9443cu
7
4639u
7
+ · · ·
1.50 × 10
4
c + 1182, 165u
7
+ 651u
6
+ · · · + 6184b 234, 1393u
7
+ 1111u
6
+
· · · + 1.24 × 10
4
a + 1510, u
8
+ u
7
+ · · · 8u 4i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
c
0.0352523cu
7
+ 0.0391332u
7
+ ··· + 0.668176c 1.25550
a
3
=
0.112629u
7
0.0898286u
6
+ ··· + 1.95820u 0.122089
0.0266818u
7
0.105272u
6
+ ··· + 0.644082u + 0.0378396
a
11
=
0.0352523cu
7
+ 0.0391332u
7
+ ··· + 1.66818c 1.25550
0.0352523cu
7
+ 0.0391332u
7
+ ··· + 0.668176c 1.25550
a
2
=
0.112629u
7
0.0898286u
6
+ ··· + 1.95820u 0.122089
0.0140686u
7
0.128234u
6
+ ··· + 0.375970u + 0.129043
a
6
=
0.0257924u
7
0.0982374u
6
+ ··· + 0.310721u + 0.763422
0.0556274u
7
+ 0.00129366u
6
+ ··· 0.900388u 0.751617
a
1
=
0.0133409u
7
+ 0.0526358u
6
+ ··· 0.322041u 1.01892
0.0391332u
7
0.0456016u
6
+ ··· 0.0113195u 0.255498
a
4
=
u
u
3
+ u
a
7
=
c
0.0352523cu
7
0.0391332u
7
+ ··· 0.668176c + 1.25550
a
12
=
0.0391332cu
7
+ 0.0133409u
7
+ ··· + 1.25550c 2.01892
0.0595084cu
7
+ 0.0430142u
7
+ ··· + 0.338939c 0.842820
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
933
1546
u
7
+
561
1546
u
6
7043
1546
u
5
278
773
u
4
+
8922
773
u
3
11743
1546
u
2
10913
1546
u +
2838
773
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 6u
7
+ 15u
6
+ 14u
5
9u
4
31u
3
26u
2
8u + 1)
2
c
2
, c
5
(u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1)
2
c
3
(u
8
2u
7
7u
6
+ 12u
5
+ 5u
4
+ 3u
3
2u
2
+ 2u + 1)
2
c
4
, c
8
(u
8
u
7
7u
6
+ 4u
5
+ 16u
4
+ 3u
3
9u
2
+ 8u 4)
2
c
6
, c
7
, c
9
c
10
, c
12
u
16
+ 3u
15
+ ··· 40u 16
c
11
u
16
3u
15
+ ··· 2336u + 256
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
8
6y
7
+ 39y
6
146y
5
+ 267y
4
239y
3
+ 162y
2
116y + 1)
2
c
2
, c
5
(y
8
+ 6y
7
+ 15y
6
+ 14y
5
9y
4
31y
3
26y
2
8y + 1)
2
c
3
(y
8
18y
7
+ 107y
6
206y
5
9y
4
91y
3
+ 2y
2
8y + 1)
2
c
4
, c
8
(y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16)
2
c
6
, c
7
, c
9
c
10
, c
12
y
16
3y
15
+ ··· 2336y + 256
c
11
y
16
+ 17y
15
+ ··· 2843136y + 65536
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.170290 + 0.725937I
a = 0.534878 + 0.687758I
b = 0.30552 + 1.93634I
c = 0.508470 + 0.631641I
d = 0.226676 + 0.960653I
1.14222 + 1.62541I 1.41499 1.42555I
u = 1.170290 + 0.725937I
a = 0.534878 + 0.687758I
b = 0.30552 + 1.93634I
c = 0.406912 0.059872I
d = 1.40546 0.35393I
1.14222 + 1.62541I 1.41499 1.42555I
u = 1.170290 0.725937I
a = 0.534878 0.687758I
b = 0.30552 1.93634I
c = 0.508470 0.631641I
d = 0.226676 0.960653I
1.14222 1.62541I 1.41499 + 1.42555I
u = 1.170290 0.725937I
a = 0.534878 0.687758I
b = 0.30552 1.93634I
c = 0.406912 + 0.059872I
d = 1.40546 + 0.35393I
1.14222 1.62541I 1.41499 + 1.42555I
u = 0.195492 + 0.552709I
a = 1.19398 + 1.11168I
b = 0.116024 + 0.545126I
c = 0.527146 + 0.046214I
d = 0.882537 + 0.165040I
2.92647 + 1.66195I 9.38368 3.48117I
u = 0.195492 + 0.552709I
a = 1.19398 + 1.11168I
b = 0.116024 + 0.545126I
c = 5.82950 + 3.76506I
d = 1.121050 + 0.078180I
2.92647 + 1.66195I 9.38368 3.48117I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.195492 0.552709I
a = 1.19398 1.11168I
b = 0.116024 0.545126I
c = 0.527146 0.046214I
d = 0.882537 0.165040I
2.92647 1.66195I 9.38368 + 3.48117I
u = 0.195492 0.552709I
a = 1.19398 1.11168I
b = 0.116024 0.545126I
c = 5.82950 3.76506I
d = 1.121050 0.078180I
2.92647 1.66195I 9.38368 + 3.48117I
u = 0.580387
a = 0.526601
b = 0.511567
c = 0.467644
d = 1.13838
2.18625 3.21290
u = 0.580387
a = 0.526601
b = 0.511567
c = 1.67123
d = 0.401639
2.18625 3.21290
u = 2.05532
a = 0.542487
b = 0.209470
c = 0.059530 + 0.815129I
d = 0.91088 + 1.22029I
7.78143 4.64060
u = 2.05532
a = 0.542487
b = 0.209470
c = 0.059530 0.815129I
d = 0.91088 1.22029I
7.78143 4.64060
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.21226 + 0.50002I
a = 0.098844 0.650687I
b = 0.55002 2.74145I
c = 0.131998 + 0.812425I
d = 1.19484 + 1.19923I
12.14610 + 5.90409I 2.27459 2.82977I
u = 2.21226 + 0.50002I
a = 0.098844 0.650687I
b = 0.55002 2.74145I
c = 0.140006 0.672065I
d = 0.70292 1.42606I
12.14610 + 5.90409I 2.27459 2.82977I
u = 2.21226 0.50002I
a = 0.098844 + 0.650687I
b = 0.55002 + 2.74145I
c = 0.131998 0.812425I
d = 1.19484 1.19923I
12.14610 5.90409I 2.27459 + 2.82977I
u = 2.21226 0.50002I
a = 0.098844 + 0.650687I
b = 0.55002 + 2.74145I
c = 0.140006 + 0.672065I
d = 0.70292 + 1.42606I
12.14610 5.90409I 2.27459 + 2.82977I
13
III. I
v
1
= ha, d, c 1, b + v, v
2
v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
1
0
a
3
=
0
v
a
11
=
1
0
a
2
=
1
v
a
6
=
1
1
a
1
=
1
1
a
4
=
v
0
a
7
=
1
0
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 1
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
, c
10
u
2
c
6
, c
11
(u + 1)
2
c
12
(u 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
c = 1.00000
d = 0
1.64493 2.02988I 3.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 1.00000
d = 0
1.64493 + 2.02988I 3.00000 3.46410I
17
IV. I
v
2
= ha, d + 1, av + c a, b + v, v
2
v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
0
1
a
3
=
0
v
a
11
=
1
1
a
2
=
1
v
a
6
=
1
1
a
1
=
1
1
a
4
=
v
0
a
7
=
1
1
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 1
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
8
c
11
, c
12
u
2
c
7
(u + 1)
2
c
9
, c
10
(u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
8
c
11
, c
12
y
2
c
7
, c
9
, c
10
(y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0
d = 1.00000
1.64493 2.02988I 3.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0
d = 1.00000
1.64493 + 2.02988I 3.00000 3.46410I
21
V. I
v
3
= hc, d + 1, b, a + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
1
0
a
9
=
1
0
a
10
=
0
1
a
3
=
1
0
a
11
=
1
1
a
2
=
1
0
a
6
=
1
0
a
1
=
1
0
a
4
=
1
0
a
7
=
1
1
a
12
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
u
c
6
, c
9
, c
10
u 1
c
7
, c
11
, c
12
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
8
y
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
3.28987 12.0000
25
VI. I
v
4
= hc, d + 1, v
2
ba + v
3
b + · · · + c 1, b
2
v
2
bv + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
10
=
0
1
a
3
=
a
b
a
11
=
1
1
a
2
=
av + v
2
b + 2a 2v + 1
b
a
6
=
a
2
v + 2v
2
a v
3
av + v
2
b + a 2v
a
2
v + 2v
2
a v
3
av + v
2
b + a 2v 1
a
1
=
a
2
v 2v
2
a + v
3
+ av v
2
+ b a + 2v
a
2
v 2v
2
a + v
3
+ av v
2
+ b a + 2v + 1
a
4
=
v
0
a
7
=
1
1
a
12
=
a
2
v 2v
2
a + v
3
+ av v
2
+ b a + 2v 1
a
2
v 2v
2
a + v
3
+ av v
2
+ b a + 2v
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
3
v + 3v
3
a 2v
4
3v
2
a + 3v
3
+ 3av 5v
2
+ 4b 7a + 5v + 5
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
26
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
3.28987 2.02988I 9.78678 2.82138I
27
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
· (u
8
+ 6u
7
+ 15u
6
+ 14u
5
9u
4
31u
3
26u
2
8u + 1)
2
· (u
16
+ 9u
15
+ ··· 24u + 16)
c
2
u(u
2
+ u + 1)
2
(u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1)
2
· (u
16
+ u
15
+ ··· 8u + 4)
c
3
u(u
2
u + 1)
2
(u
8
2u
7
7u
6
+ 12u
5
+ 5u
4
+ 3u
3
2u
2
+ 2u + 1)
2
· (u
16
u
15
+ ··· 984u + 612)
c
4
, c
8
u
5
(u
8
u
7
7u
6
+ 4u
5
+ 16u
4
+ 3u
3
9u
2
+ 8u 4)
2
· (u
16
+ 3u
15
+ ··· + 64u + 32)
c
5
u(u
2
u + 1)
2
(u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1)
2
· (u
16
+ u
15
+ ··· 8u + 4)
c
6
u
2
(u 1)(u + 1)
2
(u
16
+ 3u
15
+ ··· 40u 16)(u
16
+ 5u
15
+ ··· + u + 1)
c
7
u
2
(u + 1)
3
(u
16
+ 3u
15
+ ··· 40u 16)(u
16
+ 5u
15
+ ··· + u + 1)
c
9
, c
10
u
2
(u 1)
3
(u
16
+ 3u
15
+ ··· 40u 16)(u
16
+ 5u
15
+ ··· + u + 1)
c
11
u
2
(u + 1)
3
(u
16
3u
15
+ ··· 2336u + 256)(u
16
u
15
+ ··· + 9u + 1)
c
12
u
2
(u 1)
2
(u + 1)(u
16
+ 3u
15
+ ··· 40u 16)(u
16
+ 5u
15
+ ··· + u + 1)
28
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
· (y
8
6y
7
+ 39y
6
146y
5
+ 267y
4
239y
3
+ 162y
2
116y + 1)
2
· (y
16
3y
15
+ ··· + 1248y + 256)
c
2
, c
5
y(y
2
+ y + 1)
2
· (y
8
+ 6y
7
+ 15y
6
+ 14y
5
9y
4
31y
3
26y
2
8y + 1)
2
· (y
16
+ 9y
15
+ ··· 24y + 16)
c
3
y(y
2
+ y + 1)
2
· (y
8
18y
7
+ 107y
6
206y
5
9y
4
91y
3
+ 2y
2
8y + 1)
2
· (y
16
15y
15
+ ··· + 193320y + 374544)
c
4
, c
8
y
5
(y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16)
2
· (y
16
15y
15
+ ··· + 5120y + 1024)
c
6
, c
7
, c
9
c
10
, c
12
y
2
(y 1)
3
(y
16
3y
15
+ ··· 2336y + 256)(y
16
y
15
+ ··· + 9y + 1)
c
11
y
2
(y 1)
3
(y
16
+ 17y
15
+ ··· 2843136y + 65536)
· (y
16
+ 39y
15
+ ··· + 25y + 1)
29