12n
0064
(K12n
0064
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 11 4 8 6 11
Solving Sequence
4,9
5
6,10,11
12 3 2 1 8 7
c
4
c
9
c
11
c
3
c
2
c
1
c
8
c
7
c
5
, c
6
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h5.37718 × 10
22
u
20
− 1.64184 × 10
23
u
19
+ ··· + 1.18107 × 10
25
d + 1.07557 × 10
24
,
− 6.27749 × 10
23
u
20
+ 1.76680 × 10
24
u
19
+ ··· + 2.36214 × 10
25
c − 1.96176 × 10
25
,
4.23740 × 10
23
u
20
− 1.22487 × 10
24
u
19
+ ··· + 1.18107 × 10
25
b + 1.27339 × 10
25
,
1.40999 × 10
24
u
20
− 3.56156 × 10
24
u
19
+ ··· + 1.18107 × 10
25
a + 8.01422 × 10
25
, u
21
− 3u
20
+ ··· − 32u + 32i
I
u
2
= h182575u
12
c − 236482u
12
+ ··· − 1091678c − 1127628,
152367u
12
c − 563814u
12
+ ··· − 1320834c + 1767620,
− 72875u
12
+ 44515u
11
+ ··· + 2792824b − 1858402,
− 112621u
12
− 236501u
11
+ ··· + 1396412a − 268784,
u
13
+ u
12
+ 8u
11
+ 7u
10
+ 22u
9
+ 18u
8
+ 20u
7
+ 21u
6
− u
5
+ 5u
4
+ 8u
3
− 9u
2
+ 4u − 4i
I
v
1
= ha, d, c − v, b − v − 1, v
2
+ v + 1i
I
v
2
= ha, d + v + 1, c + a, b − v − 1, v
2
+ v + 1i
I
v
3
= hc, d + 1, b, a − 1, v + 1i
I
v
4
= ha, da − cb + 1, dv − 1, cv + ba + bv −a −v, b
2
− b + 1i
* 5 irreducible components of dim
C
= 0, with total 52 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1