12n
0068
(K12n
0068
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 3 5 11 6 12 8 10
Solving Sequence
5,9 3,6
7 10 2 1 4 12 11 8
c
5
c
6
c
9
c
2
c
1
c
4
c
12
c
10
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.01211 × 10
31
u
29
+ 4.34016 × 10
31
u
28
+ ··· + 1.97066 × 10
30
b 8.57936 × 10
32
,
1.09509 × 10
30
u
29
1.54101 × 10
30
u
28
+ ··· + 7.03808 × 10
28
a + 2.93651 × 10
31
,
u
30
2u
29
+ ··· + 112u 16i
I
u
2
= hb + 1, u
8
+ 3u
6
+ u
5
4u
4
2u
3
+ u
2
+ a + 2u + 1, u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1i
I
v
1
= ha, v
3
+ 8b 13, v
4
3v
3
+ 8v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.01 × 10
31
u
29
+ 4.34 × 10
31
u
28
+ · · · + 1.97 × 10
30
b 8.58 ×
10
32
, 1.10 × 10
30
u
29
1.54 × 10
30
u
28
+ · · · + 7.04 × 10
28
a + 2.94 ×
10
31
, u
30
2u
29
+ · · · + 112u 16i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
15.5596u
29
+ 21.8953u
28
+ ··· + 2227.18u 417.232
15.2848u
29
22.0239u
28
+ ··· 2273.81u + 435.354
a
6
=
1
u
2
a
7
=
114.601u
29
+ 164.616u
28
+ ··· + 17005.3u 3254.00
12.2418u
29
+ 17.5529u
28
+ ··· + 1815.63u 347.070
a
10
=
u
u
3
+ u
a
2
=
0.274795u
29
0.128633u
28
+ ··· 46.6332u + 18.1226
15.2848u
29
22.0239u
28
+ ··· 2273.81u + 435.354
a
1
=
114.601u
29
+ 164.616u
28
+ ··· + 17005.3u 3254.00
24.1706u
29
+ 34.7409u
28
+ ··· + 3584.44u 686.313
a
4
=
80.2622u
29
115.883u
28
+ ··· 12018.0u + 2311.90
28.2365u
29
40.6686u
28
+ ··· 4212.96u + 808.462
a
12
=
82.1322u
29
+ 117.960u
28
+ ··· + 12185.6u 2331.50
46.3428u
29
+ 66.6043u
28
+ ··· + 6876.00u 1316.29
a
11
=
120.629u
29
173.452u
28
+ ··· 17928.5u + 3434.03
58.6201u
29
84.3267u
28
+ ··· 8714.67u + 1669.08
a
8
=
102.359u
29
+ 147.063u
28
+ ··· + 15189.6u 2906.93
12.2418u
29
+ 17.5529u
28
+ ··· + 1815.63u 347.070
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18.4364u
29
27.2600u
28
+ ··· 2861.01u + 546.175
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 52u
29
+ ··· + 28u + 1
c
2
, c
4
u
30
12u
29
+ ··· 4u 1
c
3
, c
6
u
30
+ 3u
29
+ ··· 1024u + 512
c
5
, c
9
u
30
+ 2u
29
+ ··· 112u 16
c
7
u
30
4u
29
+ ··· + 4u 1
c
8
, c
11
u
30
4u
29
+ ··· + 4u + 1
c
10
, c
12
u
30
8u
29
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
136y
29
+ ··· + 4192y + 1
c
2
, c
4
y
30
52y
29
+ ··· 28y + 1
c
3
, c
6
y
30
63y
29
+ ··· 1572864y + 262144
c
5
, c
9
y
30
30y
29
+ ··· 2176y + 256
c
7
y
30
68y
29
+ ··· 16y + 1
c
8
, c
11
y
30
+ 8y
29
+ ··· 4y + 1
c
10
, c
12
y
30
+ 32y
29
+ ··· 428y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.715139 + 0.446335I
a = 0.637691 + 0.192313I
b = 0.206372 + 0.122164I
1.47077 + 1.88429I 1.09736 4.74077I
u = 0.715139 0.446335I
a = 0.637691 0.192313I
b = 0.206372 0.122164I
1.47077 1.88429I 1.09736 + 4.74077I
u = 0.520677 + 0.583530I
a = 1.10072 2.04738I
b = 1.225610 + 0.025926I
2.38851 + 1.39225I 9.42086 3.19191I
u = 0.520677 0.583530I
a = 1.10072 + 2.04738I
b = 1.225610 0.025926I
2.38851 1.39225I 9.42086 + 3.19191I
u = 1.297510 + 0.455237I
a = 0.389154 + 0.049150I
b = 0.517584 + 0.471630I
4.40422 + 6.31187I 8.00000 3.70826I
u = 1.297510 0.455237I
a = 0.389154 0.049150I
b = 0.517584 0.471630I
4.40422 6.31187I 8.00000 + 3.70826I
u = 1.350390 + 0.302093I
a = 0.402345 + 0.008016I
b = 0.436591 0.605380I
5.03747 0.32171I 10.46137 + 0.I
u = 1.350390 0.302093I
a = 0.402345 0.008016I
b = 0.436591 + 0.605380I
5.03747 + 0.32171I 10.46137 + 0.I
u = 0.458152 + 0.404118I
a = 0.901481 0.429883I
b = 0.568552 + 0.347997I
0.690095 + 0.127607I 9.90837 0.33008I
u = 0.458152 0.404118I
a = 0.901481 + 0.429883I
b = 0.568552 0.347997I
0.690095 0.127607I 9.90837 + 0.33008I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.355435 + 0.458702I
a = 0.191023 + 0.000486I
b = 1.63285 0.05553I
8.72787 + 1.60808I 9.05721 + 6.90396I
u = 0.355435 0.458702I
a = 0.191023 0.000486I
b = 1.63285 + 0.05553I
8.72787 1.60808I 9.05721 6.90396I
u = 0.043773 + 0.562236I
a = 1.55055 + 0.58614I
b = 0.101765 0.109648I
0.46641 2.28721I 1.63292 + 4.53779I
u = 0.043773 0.562236I
a = 1.55055 0.58614I
b = 0.101765 + 0.109648I
0.46641 + 2.28721I 1.63292 4.53779I
u = 0.562163 + 0.001137I
a = 4.72549 0.32287I
b = 0.951592 + 0.196609I
1.29017 + 2.42994I 20.9927 + 0.0895I
u = 0.562163 0.001137I
a = 4.72549 + 0.32287I
b = 0.951592 0.196609I
1.29017 2.42994I 20.9927 0.0895I
u = 0.485715
a = 0.919058
b = 0.317479
0.783101 12.6230
u = 1.54469 + 0.29004I
a = 1.71848 0.49046I
b = 1.98426 + 0.12684I
13.3728 4.6597I 0
u = 1.54469 0.29004I
a = 1.71848 + 0.49046I
b = 1.98426 0.12684I
13.3728 + 4.6597I 0
u = 0.12715 + 1.72473I
a = 0.181586 + 0.001643I
b = 2.07079 0.05873I
16.8261 + 3.2961I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.12715 1.72473I
a = 0.181586 0.001643I
b = 2.07079 + 0.05873I
16.8261 3.2961I 0
u = 1.75662 + 0.28335I
a = 0.969045 + 0.338183I
b = 1.39226 0.94810I
10.34510 5.56831I 0
u = 1.75662 0.28335I
a = 0.969045 0.338183I
b = 1.39226 + 0.94810I
10.34510 + 5.56831I 0
u = 1.78192
a = 1.50256
b = 2.09847
17.8492 0
u = 1.78762 + 0.03529I
a = 0.998109 0.180287I
b = 1.51752 + 0.83695I
10.57970 1.09876I 0
u = 1.78762 0.03529I
a = 0.998109 + 0.180287I
b = 1.51752 0.83695I
10.57970 + 1.09876I 0
u = 1.61551 + 0.87429I
a = 1.026870 0.855426I
b = 1.96767 + 0.40947I
18.1572 12.2530I 0
u = 1.61551 0.87429I
a = 1.026870 + 0.855426I
b = 1.96767 0.40947I
18.1572 + 12.2530I 0
u = 1.75729 + 0.77336I
a = 1.083390 + 0.694936I
b = 2.05068 0.37214I
16.9360 + 5.5790I 0
u = 1.75729 0.77336I
a = 1.083390 0.694936I
b = 2.05068 + 0.37214I
16.9360 5.5790I 0
7
II. I
u
2
= hb + 1, u
8
+ 3u
6
+ u
5
4u
4
2u
3
+ u
2
+ a + 2u + 1, u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
u
8
3u
6
u
5
+ 4u
4
+ 2u
3
u
2
2u 1
1
a
6
=
1
u
2
a
7
=
1
u
2
a
10
=
u
u
3
+ u
a
2
=
u
8
3u
6
u
5
+ 4u
4
+ 2u
3
u
2
2u 2
1
a
1
=
1
0
a
4
=
u
8
3u
6
u
5
+ 4u
4
+ 2u
3
u
2
2u 1
1
a
12
=
u
4
+ u
2
1
u
6
+ 2u
4
u
2
a
11
=
u
7
+ 2u
5
2u
3
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u
3
1
a
8
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
8
2u
7
2u
6
+ 3u
5
+ 6u
4
3u
3
3u
2
4u 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
7
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
8
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
9
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
10
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
11
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
12
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
9
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
7
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
8
, c
11
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
10
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.457852 1.072010I
b = 1.00000
0.13850 + 2.09337I 8.93344 3.71284I
u = 0.772920 0.510351I
a = 0.457852 + 1.072010I
b = 1.00000
0.13850 2.09337I 8.93344 + 3.71284I
u = 0.825933
a = 1.46592
b = 1.00000
2.84338 14.0380
u = 1.173910 + 0.391555I
a = 0.522253 + 0.392004I
b = 1.00000
6.01628 1.33617I 14.5101 + 2.5441I
u = 1.173910 0.391555I
a = 0.522253 0.392004I
b = 1.00000
6.01628 + 1.33617I 14.5101 2.5441I
u = 0.141484 + 0.739668I
a = 1.63880 0.65075I
b = 1.00000
2.26187 2.45442I 7.83172 + 1.00072I
u = 0.141484 0.739668I
a = 1.63880 + 0.65075I
b = 1.00000
2.26187 + 2.45442I 7.83172 1.00072I
u = 1.172470 + 0.500383I
a = 0.425734 0.444312I
b = 1.00000
5.24306 + 7.08493I 13.7057 8.1735I
u = 1.172470 0.500383I
a = 0.425734 + 0.444312I
b = 1.00000
5.24306 7.08493I 13.7057 + 8.1735I
11
III. I
v
1
= ha, v
3
+ 8b 13, v
4
3v
3
+ 8v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
v
0
a
3
=
0
1
8
v
3
+
13
8
a
6
=
1
0
a
7
=
1
1
8
v
3
+
21
8
a
10
=
v
0
a
2
=
1
8
v
3
+
13
8
1
8
v
3
+
13
8
a
1
=
1
8
v
3
+
13
8
1
8
v
3
21
8
a
4
=
1
8
v
3
13
8
1
8
v
3
21
8
a
12
=
1
4
v
3
+ v +
5
4
1
8
v
3
21
8
a
11
=
7
8
v
3
2v
2
+ 6v
5
8
9
8
v
3
+ 3v
2
8v +
3
8
a
8
=
1
8
v
3
13
8
1
8
v
3
+
21
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9
2
v
3
+ 13v
2
33v
17
2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
6
(u
2
u 1)
2
c
5
, c
9
u
4
c
7
(u
2
+ 3u + 1)
2
c
8
, c
12
(u
2
u + 1)
2
c
10
, c
11
(u
2
+ u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
6
(y
2
3y + 1)
2
c
5
, c
9
y
4
c
8
, c
10
, c
11
c
12
(y
2
+ y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.190983 + 0.330792I
a = 0
b = 1.61803
8.88264 + 2.02988I 15.5000 9.2736I
v = 0.190983 0.330792I
a = 0
b = 1.61803
8.88264 2.02988I 15.5000 + 9.2736I
v = 1.30902 + 2.26728I
a = 0
b = 0.618034
0.98696 + 2.02988I 15.5000 + 2.3454I
v = 1.30902 2.26728I
a = 0
b = 0.618034
0.98696 2.02988I 15.5000 2.3454I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
2
3u + 1)
2
(u
30
+ 52u
29
+ ··· + 28u + 1)
c
2
((u 1)
9
)(u
2
+ u 1)
2
(u
30
12u
29
+ ··· 4u 1)
c
3
u
9
(u
2
+ u 1)
2
(u
30
+ 3u
29
+ ··· 1024u + 512)
c
4
((u + 1)
9
)(u
2
u 1)
2
(u
30
12u
29
+ ··· 4u 1)
c
5
u
4
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
30
+ 2u
29
+ ··· 112u 16)
c
6
u
9
(u
2
u 1)
2
(u
30
+ 3u
29
+ ··· 1024u + 512)
c
7
((u
2
+ 3u + 1)
2
)(u
9
+ 5u
8
+ ··· + u + 1)
· (u
30
4u
29
+ ··· + 4u 1)
c
8
(u
2
u + 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
30
4u
29
+ ··· + 4u + 1)
c
9
u
4
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
30
+ 2u
29
+ ··· 112u 16)
c
10
(u
2
+ u + 1)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
30
8u
29
+ ··· + 4u + 1)
c
11
(u
2
+ u + 1)
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
30
4u
29
+ ··· + 4u + 1)
c
12
(u
2
u + 1)
2
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
30
8u
29
+ ··· + 4u + 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
2
7y + 1)
2
(y
30
136y
29
+ ··· + 4192y + 1)
c
2
, c
4
((y 1)
9
)(y
2
3y + 1)
2
(y
30
52y
29
+ ··· 28y + 1)
c
3
, c
6
y
9
(y
2
3y + 1)
2
(y
30
63y
29
+ ··· 1572864y + 262144)
c
5
, c
9
y
4
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
30
30y
29
+ ··· 2176y + 256)
c
7
(y
2
7y + 1)
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
30
68y
29
+ ··· 16y + 1)
c
8
, c
11
(y
2
+ y + 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
30
+ 8y
29
+ ··· 4y + 1)
c
10
, c
12
((y
2
+ y + 1)
2
)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
30
+ 32y
29
+ ··· 428y + 1)
17