12n
0071
(K12n
0071
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 3 5 12 6 9 8 11
Solving Sequence
5,10 3,6
7 8 2 1 4 9 11 12
c
5
c
6
c
7
c
2
c
1
c
4
c
9
c
10
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.70615 × 10
34
u
39
+ 1.06745 × 10
33
u
38
+ ··· + 5.47651 × 10
34
b + 1.26128 × 10
35
,
1.54680 × 10
35
u
39
+ 2.39864 × 10
35
u
38
+ ··· + 1.09530 × 10
35
a 4.53620 × 10
35
, u
40
2u
39
+ ··· + 4u 4i
I
u
2
= hb + 1, u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
3u
2
+ a + 2u 1, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
I
v
1
= ha, b + v 2, v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.71×10
34
u
39
+1.07×10
33
u
38
+· · ·+5.48×10
34
b+1.26×10
35
, 1.55×
10
35
u
39
+2.40×10
35
u
38
+· · ·+1.10×10
35
a4.54×10
35
, u
40
2u
39
+· · ·+4u4i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
1.41222u
39
2.18994u
38
+ ··· 11.0073u + 4.14151
0.311540u
39
0.0194914u
38
+ ··· 2.46184u 2.30307
a
6
=
1
u
2
a
7
=
1.29467u
39
2.32830u
38
+ ··· 7.27281u + 5.25464
0.739952u
39
0.868974u
38
+ ··· 6.01405u 0.199281
a
8
=
0.554717u
39
1.45933u
38
+ ··· 1.25876u + 5.45392
0.739952u
39
0.868974u
38
+ ··· 6.01405u 0.199281
a
2
=
1.72376u
39
2.20943u
38
+ ··· 13.4692u + 1.83844
0.311540u
39
0.0194914u
38
+ ··· 2.46184u 2.30307
a
1
=
1.29467u
39
2.32830u
38
+ ··· 7.27281u + 5.25464
0.230688u
39
+ 0.321263u
38
+ ··· + 1.87952u 0.844865
a
4
=
0.544195u
39
0.801448u
38
+ ··· 5.22381u + 0.269369
0.448480u
39
+ 0.683873u
38
+ ··· + 4.04346u 1.80083
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
12
=
1.23672u
39
2.44708u
38
+ ··· 6.97510u + 6.29059
0.392051u
39
+ 0.485888u
38
+ ··· + 3.56359u 0.624191
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.979451u
39
1.42354u
38
+ ··· + 1.47042u 2.27161
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
+ 57u
39
+ ··· + 351u + 1
c
2
, c
4
u
40
11u
39
+ ··· + 9u + 1
c
3
, c
6
u
40
+ 2u
39
+ ··· + 512u 512
c
5
, c
9
u
40
2u
39
+ ··· + 4u 4
c
7
u
40
3u
39
+ ··· + u 1
c
8
, c
11
u
40
+ 4u
39
+ ··· 6u + 1
c
10
u
40
+ 18u
39
+ ··· 104u + 16
c
12
u
40
20u
39
+ ··· 94u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
137y
39
+ ··· 102695y + 1
c
2
, c
4
y
40
57y
39
+ ··· 351y + 1
c
3
, c
6
y
40
60y
39
+ ··· 3407872y + 262144
c
5
, c
9
y
40
+ 18y
39
+ ··· 104y + 16
c
7
y
40
85y
39
+ ··· 31y + 1
c
8
, c
11
y
40
20y
39
+ ··· 94y + 1
c
10
y
40
+ 6y
39
+ ··· 26912y + 256
c
12
y
40
+ 4y
39
+ ··· 7630y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.767555 + 0.682797I
a = 0.527466 0.374649I
b = 0.351491 + 0.041737I
3.81537 + 1.27262I 6.29824 0.66128I
u = 0.767555 0.682797I
a = 0.527466 + 0.374649I
b = 0.351491 0.041737I
3.81537 1.27262I 6.29824 + 0.66128I
u = 0.873000 + 0.401971I
a = 0.540073 + 0.763124I
b = 0.870382 0.585645I
0.09726 2.75203I 2.88480 + 4.23304I
u = 0.873000 0.401971I
a = 0.540073 0.763124I
b = 0.870382 + 0.585645I
0.09726 + 2.75203I 2.88480 4.23304I
u = 0.552365 + 0.888486I
a = 0.518410 + 0.192533I
b = 0.342558 + 0.168348I
0.08572 + 2.19817I 0.38918 2.62021I
u = 0.552365 0.888486I
a = 0.518410 0.192533I
b = 0.342558 0.168348I
0.08572 2.19817I 0.38918 + 2.62021I
u = 0.027732 + 0.938035I
a = 0.600853 0.094307I
b = 0.017454 + 0.471847I
1.55152 + 1.36538I 4.32744 4.03663I
u = 0.027732 0.938035I
a = 0.600853 + 0.094307I
b = 0.017454 0.471847I
1.55152 1.36538I 4.32744 + 4.03663I
u = 0.431539 + 0.988175I
a = 0.546146 + 0.283746I
b = 0.284057 0.713228I
0.42853 + 2.82368I 2.74140 3.00000I
u = 0.431539 0.988175I
a = 0.546146 0.283746I
b = 0.284057 + 0.713228I
0.42853 2.82368I 2.74140 + 3.00000I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.079360 + 0.315602I
a = 0.188664 + 0.002235I
b = 1.79704 0.10786I
11.27530 + 1.20929I 5.80586 + 0.92387I
u = 1.079360 0.315602I
a = 0.188664 0.002235I
b = 1.79704 + 0.10786I
11.27530 1.20929I 5.80586 0.92387I
u = 0.216652 + 1.135450I
a = 1.66179 0.18633I
b = 1.318890 0.413598I
5.01603 0.16820I 8.63543 + 0.05327I
u = 0.216652 1.135450I
a = 1.66179 + 0.18633I
b = 1.318890 + 0.413598I
5.01603 + 0.16820I 8.63543 0.05327I
u = 0.481478 + 1.060550I
a = 2.09296 + 1.81237I
b = 1.77358 0.16425I
8.56336 + 3.34791I 4.12753 2.29966I
u = 0.481478 1.060550I
a = 2.09296 1.81237I
b = 1.77358 + 0.16425I
8.56336 3.34791I 4.12753 + 2.29966I
u = 0.389413 + 1.130570I
a = 1.39760 + 0.84641I
b = 1.016230 0.711563I
4.30445 2.98930I 8.10205 + 2.51738I
u = 0.389413 1.130570I
a = 1.39760 0.84641I
b = 1.016230 + 0.711563I
4.30445 + 2.98930I 8.10205 2.51738I
u = 0.697362 + 1.004410I
a = 0.423595 0.213085I
b = 0.479221 0.154409I
2.84493 6.83482I 4.23533 + 5.20206I
u = 0.697362 1.004410I
a = 0.423595 + 0.213085I
b = 0.479221 + 0.154409I
2.84493 + 6.83482I 4.23533 5.20206I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.496749 + 1.146130I
a = 1.36151 + 0.53213I
b = 1.45579 + 0.29115I
3.51298 4.94394I 5.28672 + 5.25390I
u = 0.496749 1.146130I
a = 1.36151 0.53213I
b = 1.45579 0.29115I
3.51298 + 4.94394I 5.28672 5.25390I
u = 1.125440 + 0.571611I
a = 0.189635 0.004384I
b = 1.78560 + 0.20613I
9.38333 6.25287I 3.71429 + 3.55273I
u = 1.125440 0.571611I
a = 0.189635 + 0.004384I
b = 1.78560 0.20613I
9.38333 + 6.25287I 3.71429 3.55273I
u = 0.711358 + 0.187576I
a = 0.28261 + 1.89131I
b = 1.119340 0.213535I
0.733261 + 0.420305I 2.53134 5.06503I
u = 0.711358 0.187576I
a = 0.28261 1.89131I
b = 1.119340 + 0.213535I
0.733261 0.420305I 2.53134 + 5.06503I
u = 0.452397 + 0.566444I
a = 0.191549 0.000487I
b = 1.59905 + 0.08829I
6.90633 + 0.62272I 3.96477 7.65597I
u = 0.452397 0.566444I
a = 0.191549 + 0.000487I
b = 1.59905 0.08829I
6.90633 0.62272I 3.96477 + 7.65597I
u = 0.344447 + 0.623097I
a = 2.15466 2.41727I
b = 0.764103 + 0.413686I
0.797208 + 0.661473I 4.69435 5.79725I
u = 0.344447 0.623097I
a = 2.15466 + 2.41727I
b = 0.764103 0.413686I
0.797208 0.661473I 4.69435 + 5.79725I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.608559 + 1.157670I
a = 1.08482 0.95472I
b = 0.923559 + 0.844828I
2.24385 + 8.24833I 4.49922 6.95806I
u = 0.608559 1.157670I
a = 1.08482 + 0.95472I
b = 0.923559 0.844828I
2.24385 8.24833I 4.49922 + 6.95806I
u = 0.640898 + 1.241650I
a = 1.47950 1.37909I
b = 1.82246 + 0.25034I
14.2021 7.3246I 7.52732 + 3.21849I
u = 0.640898 1.241650I
a = 1.47950 + 1.37909I
b = 1.82246 0.25034I
14.2021 + 7.3246I 7.52732 3.21849I
u = 0.11613 + 1.42102I
a = 2.07367 0.26407I
b = 1.93738 + 0.04804I
17.7940 3.0498I 8.36562 + 2.61097I
u = 0.11613 1.42102I
a = 2.07367 + 0.26407I
b = 1.93738 0.04804I
17.7940 + 3.0498I 8.36562 2.61097I
u = 0.77397 + 1.20805I
a = 1.18273 + 1.46175I
b = 1.78706 0.30179I
11.4479 + 13.0879I 0. 6.81590I
u = 0.77397 1.20805I
a = 1.18273 1.46175I
b = 1.78706 + 0.30179I
11.4479 13.0879I 0. + 6.81590I
u = 0.458630
a = 1.38775
b = 0.0558807
1.26099 8.96990
u = 0.325204
a = 1.75723
b = 0.755372
1.11358 9.07280
8
II.
I
u
2
= hb +1, u
8
+2u
7
+· · · +a1, u
9
u
8
+2u
7
u
6
+3u
5
u
4
+2u
3
+u+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
1
a
6
=
1
u
2
a
7
=
1
u
2
a
8
=
u
2
+ 1
u
2
a
2
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u
1
a
1
=
1
0
a
4
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
12
=
u
8
+ u
6
+ u
4
1
u
8
+ u
7
u
6
+ 2u
5
u
4
+ 2u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
8
8u
7
+ 12u
6
11u
5
+ 18u
4
17u
3
+ 15u
2
6u + 4
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
7
, c
10
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
8
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
9
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
11
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
12
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
9
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
7
, c
10
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
8
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
12
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 1.004430 + 0.297869I
b = 1.00000
3.42837 2.09337I 6.83106 + 4.06115I
u = 0.140343 0.966856I
a = 1.004430 0.297869I
b = 1.00000
3.42837 + 2.09337I 6.83106 4.06115I
u = 0.628449 + 0.875112I
a = 0.275254 + 0.816341I
b = 1.00000
1.02799 2.45442I 7.33502 + 3.27944I
u = 0.628449 0.875112I
a = 0.275254 0.816341I
b = 1.00000
1.02799 + 2.45442I 7.33502 3.27944I
u = 0.796005 + 0.733148I
a = 0.070080 0.850995I
b = 1.00000
2.72642 1.33617I 2.78826 + 0.80685I
u = 0.796005 0.733148I
a = 0.070080 + 0.850995I
b = 1.00000
2.72642 + 1.33617I 2.78826 0.80685I
u = 0.728966 + 0.986295I
a = 0.195086 0.635552I
b = 1.00000
1.95319 + 7.08493I 4.66194 6.93476I
u = 0.728966 0.986295I
a = 0.195086 + 0.635552I
b = 1.00000
1.95319 7.08493I 4.66194 + 6.93476I
u = 0.512358
a = 3.80937
b = 1.00000
0.446489 15.2330
12
III. I
v
1
= ha, b + v 2, v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
3
=
0
v + 2
a
6
=
1
0
a
7
=
1
v + 3
a
8
=
v 2
v + 3
a
2
=
v + 2
v + 2
a
1
=
v + 2
v 3
a
4
=
v 2
v 3
a
9
=
v
0
a
11
=
v
0
a
12
=
2
v 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
5
, c
9
, c
10
u
2
c
7
u
2
+ 3u + 1
c
8
(u + 1)
2
c
11
, c
12
(u 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
5
, c
9
, c
10
y
2
c
8
, c
11
, c
12
(y 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
7.23771 9.00000
v = 2.61803
a = 0
b = 0.618034
0.657974 9.00000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
2
3u + 1)(u
40
+ 57u
39
+ ··· + 351u + 1)
c
2
((u 1)
9
)(u
2
+ u 1)(u
40
11u
39
+ ··· + 9u + 1)
c
3
u
9
(u
2
+ u 1)(u
40
+ 2u
39
+ ··· + 512u 512)
c
4
((u + 1)
9
)(u
2
u 1)(u
40
11u
39
+ ··· + 9u + 1)
c
5
u
2
(u
9
u
8
+ ··· + u + 1)(u
40
2u
39
+ ··· + 4u 4)
c
6
u
9
(u
2
u 1)(u
40
+ 2u
39
+ ··· + 512u 512)
c
7
(u
2
+ 3u + 1)(u
9
+ 3u
8
+ ··· + u 1)
· (u
40
3u
39
+ ··· + u 1)
c
8
(u + 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
40
+ 4u
39
+ ··· 6u + 1)
c
9
u
2
(u
9
+ u
8
+ ··· + u 1)(u
40
2u
39
+ ··· + 4u 4)
c
10
u
2
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
40
+ 18u
39
+ ··· 104u + 16)
c
11
(u 1)
2
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
40
+ 4u
39
+ ··· 6u + 1)
c
12
(u 1)
2
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
40
20u
39
+ ··· 94u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
2
7y + 1)(y
40
137y
39
+ ··· 102695y + 1)
c
2
, c
4
((y 1)
9
)(y
2
3y + 1)(y
40
57y
39
+ ··· 351y + 1)
c
3
, c
6
y
9
(y
2
3y + 1)(y
40
60y
39
+ ··· 3407872y + 262144)
c
5
, c
9
y
2
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
40
+ 18y
39
+ ··· 104y + 16)
c
7
(y
2
7y + 1)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
40
85y
39
+ ··· 31y + 1)
c
8
, c
11
(y 1)
2
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
40
20y
39
+ ··· 94y + 1)
c
10
y
2
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
40
+ 6y
39
+ ··· 26912y + 256)
c
12
(y 1)
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
40
+ 4y
39
+ ··· 7630y + 1)
18