12n
0072
(K12n
0072
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 8 10 3 12 11 6 1 9
Solving Sequence
9,12 1,3
2 8 4 5 7 11 10 6
c
12
c
1
c
8
c
3
c
4
c
7
c
11
c
9
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2.81279 × 10
18
u
59
1.05287 × 10
19
u
58
+ ··· + 6.77112 × 10
17
b 1.27731 × 10
18
,
9.49759 × 10
17
u
59
1.92602 × 10
18
u
58
+ ··· + 6.77112 × 10
17
a 3.84134 × 10
17
, u
60
5u
59
+ ··· + 2u + 1i
I
u
2
= h−u
8
+ u
7
+ u
6
2u
5
+ u
3
2u
2
+ b + u 1, u
8
+ u
7
+ u
6
2u
5
+ u
3
2u
2
+ a + u 1,
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
I
u
3
= h−a
2
+ b + a 1, a
3
2a
2
+ a 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.81 × 10
18
u
59
1.05 × 10
19
u
58
+ · · · + 6.77 × 10
17
b 1.28 × 10
18
, 9.50 ×
10
17
u
59
1.93×10
18
u
58
+· · ·+6.77×10
17
a3.84×10
17
, u
60
5u
59
+· · ·+2u+1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
3
=
1.40266u
59
+ 2.84446u
58
+ ··· 20.1139u + 0.567312
4.15409u
59
+ 15.5494u
58
+ ··· + 1.51219u + 1.88640
a
2
=
4.29143u
59
+ 12.8571u
58
+ ··· 15.7514u + 0.224484
5.29000u
59
+ 18.1522u
58
+ ··· 3.12746u + 0.655392
a
8
=
u
u
a
4
=
1.47255u
59
+ 1.96750u
58
+ ··· 24.9698u 0.484933
4.22398u
59
+ 14.6724u
58
+ ··· 3.34373u + 0.834159
a
5
=
1.93062u
59
6.99368u
58
+ ··· 6.44373u + 1.45359
0.932046u
59
1.69858u
58
+ ··· + 6.18018u + 1.88449
a
7
=
1.88449u
59
+ 10.3545u
58
+ ··· + 20.5308u + 2.41119
2.65941u
59
9.86960u
58
+ ··· 2.40765u 1.93062
a
11
=
u
2
+ 1
u
4
a
10
=
u
5
2u
3
+ u
u
7
u
5
+ u
a
6
=
3.11073u
59
+ 10.8706u
58
+ ··· + 6.04965u 1.15134
2.11216u
59
+ 5.57554u
58
+ ··· 6.57426u 1.58225
(ii) Obstruction class = 1
(iii) Cusp Shapes =
254104713520312101
338556134519489602
u
59
287234417535105935
338556134519489602
u
58
+···+
9811882428269304349
338556134519489602
u
403682827173379753
169278067259744801
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
60
+ 17u
59
+ ··· + 51u + 1
c
2
, c
4
u
60
11u
59
+ ··· + u + 1
c
3
, c
7
u
60
2u
59
+ ··· 512u 512
c
5
u
60
+ 3u
59
+ ··· u 1
c
6
, c
10
u
60
+ 2u
59
+ ··· 28u 8
c
8
, c
12
u
60
5u
59
+ ··· + 2u + 1
c
9
u
60
24u
59
+ ··· + 336u + 64
c
11
u
60
+ 31u
59
+ ··· + 52u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
60
+ 63y
59
+ ··· 259y + 1
c
2
, c
4
y
60
17y
59
+ ··· 51y + 1
c
3
, c
7
y
60
+ 60y
59
+ ··· + 262144y + 262144
c
5
y
60
69y
59
+ ··· 55y + 1
c
6
, c
10
y
60
+ 24y
59
+ ··· 336y + 64
c
8
, c
12
y
60
31y
59
+ ··· 52y + 1
c
9
y
60
+ 20y
59
+ ··· 486656y + 4096
c
11
y
60
+ y
59
+ ··· 1872y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.337858 + 0.894600I
a = 0.13383 + 1.43636I
b = 1.48207 + 0.70345I
7.94883 + 2.76650I 3.24347 1.05730I
u = 0.337858 0.894600I
a = 0.13383 1.43636I
b = 1.48207 0.70345I
7.94883 2.76650I 3.24347 + 1.05730I
u = 0.275210 + 0.913906I
a = 0.05027 1.70048I
b = 1.38687 0.67504I
6.81572 + 9.76098I 4.86985 5.65372I
u = 0.275210 0.913906I
a = 0.05027 + 1.70048I
b = 1.38687 + 0.67504I
6.81572 9.76098I 4.86985 + 5.65372I
u = 0.933032
a = 4.22833
b = 4.57203
3.01686 67.5230
u = 0.888711 + 0.272847I
a = 0.078190 0.558523I
b = 0.405126 + 0.581562I
1.58683 3.66181I 4.28823 + 9.48383I
u = 0.888711 0.272847I
a = 0.078190 + 0.558523I
b = 0.405126 0.581562I
1.58683 + 3.66181I 4.28823 9.48383I
u = 0.925197 + 0.542464I
a = 0.489920 0.539197I
b = 0.407019 + 0.364942I
1.95619 3.10505I 0. + 4.26282I
u = 0.925197 0.542464I
a = 0.489920 + 0.539197I
b = 0.407019 0.364942I
1.95619 + 3.10505I 0. 4.26282I
u = 0.775160 + 0.782039I
a = 1.08347 1.85556I
b = 2.09668 0.60592I
10.65710 + 0.79828I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.775160 0.782039I
a = 1.08347 + 1.85556I
b = 2.09668 + 0.60592I
10.65710 0.79828I 0
u = 0.639144 + 0.625775I
a = 0.407955 + 0.337968I
b = 0.642419 + 0.534726I
2.79847 1.51236I 1.81428 + 3.54798I
u = 0.639144 0.625775I
a = 0.407955 0.337968I
b = 0.642419 0.534726I
2.79847 + 1.51236I 1.81428 3.54798I
u = 1.053880 + 0.334060I
a = 0.281699 + 0.729493I
b = 0.305612 0.503382I
0.75501 + 1.63619I 0
u = 1.053880 0.334060I
a = 0.281699 0.729493I
b = 0.305612 + 0.503382I
0.75501 1.63619I 0
u = 1.042430 + 0.414082I
a = 0.353731 1.109550I
b = 1.17215 1.41693I
2.88310 + 2.96934I 0
u = 1.042430 0.414082I
a = 0.353731 + 1.109550I
b = 1.17215 + 1.41693I
2.88310 2.96934I 0
u = 1.085610 + 0.332010I
a = 1.27018 2.13218I
b = 1.40022 1.45408I
4.66678 + 1.12394I 0
u = 1.085610 0.332010I
a = 1.27018 + 2.13218I
b = 1.40022 + 1.45408I
4.66678 1.12394I 0
u = 0.844243 + 0.760095I
a = 1.12133 + 1.75611I
b = 2.35320 + 0.80071I
10.45220 6.50197I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.844243 0.760095I
a = 1.12133 1.75611I
b = 2.35320 0.80071I
10.45220 + 6.50197I 0
u = 1.141290 + 0.233441I
a = 1.112610 + 0.300698I
b = 1.85544 + 0.38885I
3.30337 0.69653I 0
u = 1.141290 0.233441I
a = 1.112610 0.300698I
b = 1.85544 0.38885I
3.30337 + 0.69653I 0
u = 1.035450 + 0.539611I
a = 2.13511 + 1.38666I
b = 2.82243 + 0.20160I
3.27029 + 1.99564I 0
u = 1.035450 0.539611I
a = 2.13511 1.38666I
b = 2.82243 0.20160I
3.27029 1.99564I 0
u = 0.325660 + 0.762789I
a = 0.550531 1.183860I
b = 0.204288 + 0.081198I
1.25130 + 3.50817I 4.71158 4.55526I
u = 0.325660 0.762789I
a = 0.550531 + 1.183860I
b = 0.204288 0.081198I
1.25130 3.50817I 4.71158 + 4.55526I
u = 1.058140 + 0.503774I
a = 0.862782 0.336531I
b = 1.78762 0.38804I
2.23222 3.63610I 0
u = 1.058140 0.503774I
a = 0.862782 + 0.336531I
b = 1.78762 + 0.38804I
2.23222 + 3.63610I 0
u = 1.096800 + 0.538710I
a = 2.26195 1.34848I
b = 3.18815 0.39611I
2.24129 + 8.72496I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.096800 0.538710I
a = 2.26195 + 1.34848I
b = 3.18815 + 0.39611I
2.24129 8.72496I 0
u = 1.103150 + 0.529889I
a = 0.90009 + 1.69435I
b = 1.069960 + 0.856532I
3.28631 6.19021I 0
u = 1.103150 0.529889I
a = 0.90009 1.69435I
b = 1.069960 0.856532I
3.28631 + 6.19021I 0
u = 0.096441 + 0.769173I
a = 0.709332 + 0.054966I
b = 0.1034940 0.0442376I
1.35021 + 2.66631I 2.81466 3.68602I
u = 0.096441 0.769173I
a = 0.709332 0.054966I
b = 0.1034940 + 0.0442376I
1.35021 2.66631I 2.81466 + 3.68602I
u = 0.484975 + 0.602832I
a = 0.07018 2.49429I
b = 1.59748 1.32332I
4.88218 + 2.55090I 5.75322 3.65479I
u = 0.484975 0.602832I
a = 0.07018 + 2.49429I
b = 1.59748 + 1.32332I
4.88218 2.55090I 5.75322 + 3.65479I
u = 0.355933 + 0.652328I
a = 0.10224 + 2.47624I
b = 1.46844 + 1.04544I
4.38705 4.06822I 6.35132 + 1.53091I
u = 0.355933 0.652328I
a = 0.10224 2.47624I
b = 1.46844 1.04544I
4.38705 + 4.06822I 6.35132 1.53091I
u = 1.127800 + 0.566306I
a = 0.440646 + 0.632335I
b = 1.31378 + 1.01990I
1.10174 8.51688I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.127800 0.566306I
a = 0.440646 0.632335I
b = 1.31378 1.01990I
1.10174 + 8.51688I 0
u = 1.197690 + 0.405791I
a = 0.367973 0.288662I
b = 0.525918 0.753873I
5.12612 + 1.38879I 0
u = 1.197690 0.405791I
a = 0.367973 + 0.288662I
b = 0.525918 + 0.753873I
5.12612 1.38879I 0
u = 1.186970 + 0.490457I
a = 0.232541 + 0.230233I
b = 0.436907 + 0.672759I
4.52134 7.29315I 0
u = 1.186970 0.490457I
a = 0.232541 0.230233I
b = 0.436907 0.672759I
4.52134 + 7.29315I 0
u = 0.312115 + 0.635855I
a = 0.281014 0.263517I
b = 1.50466 0.17613I
1.03251 + 1.61115I 5.03240 0.45414I
u = 0.312115 0.635855I
a = 0.281014 + 0.263517I
b = 1.50466 + 0.17613I
1.03251 1.61115I 5.03240 + 0.45414I
u = 0.692437 + 0.039676I
a = 1.343570 + 0.174908I
b = 0.691006 + 0.039688I
1.092530 + 0.001807I 8.18169 + 0.37203I
u = 0.692437 0.039676I
a = 1.343570 0.174908I
b = 0.691006 0.039688I
1.092530 0.001807I 8.18169 0.37203I
u = 1.293890 + 0.191302I
a = 0.184711 + 0.635831I
b = 0.353270 0.535335I
2.43582 + 0.64946I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.293890 0.191302I
a = 0.184711 0.635831I
b = 0.353270 + 0.535335I
2.43582 0.64946I 0
u = 0.459124 + 0.506719I
a = 0.06558 + 1.82861I
b = 0.108857 + 0.574464I
0.435329 0.564285I 6.58756 + 0.11639I
u = 0.459124 0.506719I
a = 0.06558 1.82861I
b = 0.108857 0.574464I
0.435329 + 0.564285I 6.58756 0.11639I
u = 1.165420 + 0.613877I
a = 1.78237 1.00307I
b = 2.52278 + 0.05328I
5.45561 8.29310I 0
u = 1.165420 0.613877I
a = 1.78237 + 1.00307I
b = 2.52278 0.05328I
5.45561 + 8.29310I 0
u = 1.301730 + 0.255705I
a = 0.233918 0.675467I
b = 0.351604 + 0.513151I
1.58747 5.92424I 0
u = 1.301730 0.255705I
a = 0.233918 + 0.675467I
b = 0.351604 0.513151I
1.58747 + 5.92424I 0
u = 1.196470 + 0.595496I
a = 2.01101 + 0.96883I
b = 2.93963 + 0.12005I
4.0303 15.2628I 0
u = 1.196470 0.595496I
a = 2.01101 0.96883I
b = 2.93963 0.12005I
4.0303 + 15.2628I 0
u = 0.151881
a = 4.55507
b = 0.484061
0.986470 9.89900
10
II. I
u
2
= h−u
8
+ u
7
+ u
6
2u
5
+ u
3
2u
2
+ b + u 1, u
8
+ u
7
+ u
6
2u
5
+
u
3
2u
2
+ a + u 1, u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
3
=
u
8
u
7
u
6
+ 2u
5
u
3
+ 2u
2
u + 1
u
8
u
7
u
6
+ 2u
5
u
3
+ 2u
2
u + 1
a
2
=
u
8
u
7
u
6
+ 2u
5
u
3
+ 2u
2
u + 2
u
8
u
7
u
6
+ 2u
5
u
3
+ 3u
2
u + 1
a
8
=
u
u
a
4
=
u
8
u
7
u
6
+ 2u
5
u
3
+ 2u
2
u + 1
u
8
u
7
u
6
+ 2u
5
u
3
+ 2u
2
u + 1
a
5
=
1
u
2
a
7
=
u
u
a
11
=
u
2
+ 1
u
4
a
10
=
u
5
2u
3
+ u
u
7
u
5
+ u
a
6
=
u
4
+ u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
8
u
7
+ u
5
4u
4
+ 5u
3
+ 7u
2
4u 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
, c
9
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
6
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
8
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
10
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
11
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
9
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
6
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
8
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
11
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.624323 + 0.742839I
b = 0.624323 + 0.742839I
0.13850 2.09337I 5.80108 + 4.26451I
u = 0.772920 0.510351I
a = 0.624323 0.742839I
b = 0.624323 0.742839I
0.13850 + 2.09337I 5.80108 4.26451I
u = 0.825933
a = 3.14628
b = 3.14628
2.84338 2.07210
u = 1.173910 + 0.391555I
a = 0.250943 1.026430I
b = 0.250943 1.026430I
6.01628 + 1.33617I 17.3564 0.5967I
u = 1.173910 0.391555I
a = 0.250943 + 1.026430I
b = 0.250943 + 1.026430I
6.01628 1.33617I 17.3564 + 0.5967I
u = 0.141484 + 0.739668I
a = 0.642765 + 0.088097I
b = 0.642765 + 0.088097I
2.26187 + 2.45442I 11.99086 2.54651I
u = 0.141484 0.739668I
a = 0.642765 0.088097I
b = 0.642765 0.088097I
2.26187 2.45442I 11.99086 + 2.54651I
u = 1.172470 + 0.500383I
a = 0.089286 + 0.842785I
b = 0.089286 + 0.842785I
5.24306 7.08493I 15.8155 + 4.8919I
u = 1.172470 0.500383I
a = 0.089286 0.842785I
b = 0.089286 0.842785I
5.24306 + 7.08493I 15.8155 4.8919I
14
III. I
u
3
= h−a
2
+ b + a 1, a
3
2a
2
+ a 1, u + 1i
(i) Arc colorings
a
9
=
0
1
a
12
=
1
0
a
1
=
1
1
a
3
=
a
a
2
a + 1
a
2
=
2
a
2
a + 1
a
8
=
1
1
a
4
=
a
2
+ 3a 1
a
a
5
=
a
2
+ a + 1
0
a
7
=
0
a
2
a 1
a
11
=
0
1
a
10
=
0
1
a
6
=
0
a
2
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
2a 7
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
u
3
+ 3u
2
+ 2u 1
c
6
, c
9
, c
10
u
3
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
11
(u 1)
3
c
12
(u + 1)
3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
y
3
5y
2
+ 10y 1
c
6
, c
9
, c
10
y
3
c
8
, c
11
, c
12
(y 1)
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.337641 0.562280I
1.37919 + 2.82812I 7.78492 1.30714I
u = 1.00000
a = 0.122561 0.744862I
b = 0.337641 + 0.562280I
1.37919 2.82812I 7.78492 + 1.30714I
u = 1.00000
a = 1.75488
b = 2.32472
2.75839 7.43020
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
3
u
2
+ 2u 1)(u
60
+ 17u
59
+ ··· + 51u + 1)
c
2
((u 1)
9
)(u
3
+ u
2
1)(u
60
11u
59
+ ··· + u + 1)
c
3
u
9
(u
3
u
2
+ 2u 1)(u
60
2u
59
+ ··· 512u 512)
c
4
((u + 1)
9
)(u
3
u
2
+ 1)(u
60
11u
59
+ ··· + u + 1)
c
5
(u
3
+ 3u
2
+ 2u 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
60
+ 3u
59
+ ··· u 1)
c
6
u
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
60
+ 2u
59
+ ··· 28u 8)
c
7
u
9
(u
3
+ u
2
+ 2u + 1)(u
60
2u
59
+ ··· 512u 512)
c
8
(u 1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
60
5u
59
+ ··· + 2u + 1)
c
9
u
3
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
60
24u
59
+ ··· + 336u + 64)
c
10
u
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
60
+ 2u
59
+ ··· 28u 8)
c
11
(u 1)
3
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
60
+ 31u
59
+ ··· + 52u + 1)
c
12
(u + 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
60
5u
59
+ ··· + 2u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
3
+ 3y
2
+ 2y 1)(y
60
+ 63y
59
+ ··· 259y + 1)
c
2
, c
4
((y 1)
9
)(y
3
y
2
+ 2y 1)(y
60
17y
59
+ ··· 51y + 1)
c
3
, c
7
y
9
(y
3
+ 3y
2
+ 2y 1)(y
60
+ 60y
59
+ ··· + 262144y + 262144)
c
5
(y
3
5y
2
+ 10y 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
60
69y
59
+ ··· 55y + 1)
c
6
, c
10
y
3
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
60
+ 24y
59
+ ··· 336y + 64)
c
8
, c
12
(y 1)
3
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
60
31y
59
+ ··· 52y + 1)
c
9
y
3
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
60
+ 20y
59
+ ··· 486656y + 4096)
c
11
(y 1)
3
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
60
+ y
59
+ ··· 1872y + 1)
20