12n
0075
(K12n
0075
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 8 11 3 12 1 6 10 9
Solving Sequence
8,12
9 1
4,10
3 2 7 11 6 5
c
8
c
12
c
9
c
3
c
1
c
7
c
11
c
6
c
5
c
2
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.17318 × 10
15
u
51
+ 1.53597 × 10
16
u
50
+ ··· + 1.39326 × 10
15
b + 3.61251 × 10
15
,
3.45613 × 10
16
u
51
1.28036 × 10
17
u
50
+ ··· + 2.78652 × 10
15
a + 6.93027 × 10
15
, u
52
5u
51
+ ··· + 14u + 1i
I
u
2
= hb, u
7
2u
6
2u
5
+ 4u
4
+ 2u
3
u
2
+ a u 3, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
3
= ha
2
+ 5b + 3a + 5, a
3
+ a
2
+ 4a + 5, u + 1i
* 3 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.17 × 10
15
u
51
+ 1.54 × 10
16
u
50
+ · · · + 1.39 × 10
15
b + 3.61 ×
10
15
, 3.46 × 10
16
u
51
1.28 × 10
17
u
50
+ · · · + 2.79 × 10
15
a + 6.93 ×
10
15
, u
52
5u
51
+ · · · + 14u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
12.4030u
51
+ 45.9484u
50
+ ··· + 81.3098u 2.48707
2.99526u
51
11.0243u
50
+ ··· 30.7361u 2.59285
a
10
=
u
2
+ 1
u
4
2u
2
a
3
=
9.40778u
51
+ 34.9242u
50
+ ··· + 50.5737u 5.07992
2.99526u
51
11.0243u
50
+ ··· 30.7361u 2.59285
a
2
=
17.4460u
51
64.6564u
50
+ ··· 149.987u 4.05564
3.75474u
51
+ 13.9757u
50
+ ··· + 42.5139u + 3.15715
a
7
=
9.55271u
51
+ 35.8772u
50
+ ··· + 88.4408u + 2.91964
8.60172u
51
33.2652u
50
+ ··· 104.422u 7.28044
a
11
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
6
=
8.36062u
51
30.6096u
50
+ ··· 105.182u 10.2144
3.75474u
51
13.9757u
50
+ ··· 42.5139u 3.15715
a
5
=
4.60588u
51
16.6339u
50
+ ··· 62.6681u 7.05722
3.75474u
51
13.9757u
50
+ ··· 42.5139u 3.15715
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
11065552867124641
1393259322402082
u
51
+
42789532669637567
1393259322402082
u
50
+ ···+
1199032770084567
1393259322402082
u
7200606156302692
696629661201041
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 14u
51
+ ··· + 43u + 1
c
2
, c
4
u
52
10u
51
+ ··· u + 1
c
3
, c
7
u
52
2u
51
+ ··· + 384u 256
c
5
u
52
+ 3u
51
+ ··· u 1
c
6
, c
10
u
52
+ 2u
51
+ ··· 28u 8
c
8
, c
9
, c
12
u
52
+ 5u
51
+ ··· 14u + 1
c
11
u
52
24u
51
+ ··· 1488u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
+ 58y
51
+ ··· 447y + 1
c
2
, c
4
y
52
14y
51
+ ··· 43y + 1
c
3
, c
7
y
52
+ 54y
51
+ ··· + 606208y + 65536
c
5
y
52
61y
51
+ ··· 19y + 1
c
6
, c
10
y
52
24y
51
+ ··· 1488y + 64
c
8
, c
9
, c
12
y
52
47y
51
+ ··· 104y + 1
c
11
y
52
+ 4y
51
+ ··· 498944y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.864111 + 0.613274I
a = 0.72971 2.28554I
b = 0.08277 + 1.65392I
7.67792 2.14785I 7.33727 + 2.34757I
u = 0.864111 0.613274I
a = 0.72971 + 2.28554I
b = 0.08277 1.65392I
7.67792 + 2.14785I 7.33727 2.34757I
u = 0.278369 + 0.886469I
a = 0.81489 1.68991I
b = 0.52357 + 1.58617I
5.03572 9.87508I 3.10372 + 7.08066I
u = 0.278369 0.886469I
a = 0.81489 + 1.68991I
b = 0.52357 1.58617I
5.03572 + 9.87508I 3.10372 7.08066I
u = 0.344404 + 0.851796I
a = 0.85095 + 1.66493I
b = 0.08288 1.66614I
6.09934 2.94801I 4.84338 + 2.76292I
u = 0.344404 0.851796I
a = 0.85095 1.66493I
b = 0.08288 + 1.66614I
6.09934 + 2.94801I 4.84338 2.76292I
u = 0.959966 + 0.581836I
a = 0.84889 + 2.03520I
b = 0.40253 1.60177I
7.11104 + 4.74276I 0
u = 0.959966 0.581836I
a = 0.84889 2.03520I
b = 0.40253 + 1.60177I
7.11104 4.74276I 0
u = 1.149080 + 0.112159I
a = 0.11168 + 3.35174I
b = 0.257735 0.531872I
0.064366 0.675431I 0
u = 1.149080 0.112159I
a = 0.11168 3.35174I
b = 0.257735 + 0.531872I
0.064366 + 0.675431I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.078334 + 0.779627I
a = 0.0018202 0.0329755I
b = 0.000332 0.629614I
2.90851 2.74298I 4.20673 + 3.96739I
u = 0.078334 0.779627I
a = 0.0018202 + 0.0329755I
b = 0.000332 + 0.629614I
2.90851 + 2.74298I 4.20673 3.96739I
u = 1.219950 + 0.081401I
a = 0.28979 + 1.63338I
b = 0.347717 1.160600I
5.43256 2.37277I 0
u = 1.219950 0.081401I
a = 0.28979 1.63338I
b = 0.347717 + 1.160600I
5.43256 + 2.37277I 0
u = 0.282889 + 0.711805I
a = 0.178611 0.588706I
b = 1.029030 + 0.101314I
0.42821 3.83727I 2.28173 + 6.95386I
u = 0.282889 0.711805I
a = 0.178611 + 0.588706I
b = 1.029030 0.101314I
0.42821 + 3.83727I 2.28173 6.95386I
u = 1.193430 + 0.324240I
a = 0.669986 0.648263I
b = 0.015350 + 0.613459I
0.485168 1.259080I 0
u = 1.193430 0.324240I
a = 0.669986 + 0.648263I
b = 0.015350 0.613459I
0.485168 + 1.259080I 0
u = 0.680369 + 0.289746I
a = 0.012168 0.147432I
b = 0.638639 0.199115I
1.074090 + 0.016258I 8.77032 1.10969I
u = 0.680369 0.289746I
a = 0.012168 + 0.147432I
b = 0.638639 + 0.199115I
1.074090 0.016258I 8.77032 + 1.10969I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.280180 + 0.138912I
a = 1.48485 + 1.45215I
b = 0.906569 0.186892I
2.21484 2.00952I 0
u = 1.280180 0.138912I
a = 1.48485 1.45215I
b = 0.906569 + 0.186892I
2.21484 + 2.00952I 0
u = 0.710230
a = 0.329379
b = 0.453636
1.01816 10.6560
u = 0.202574 + 0.614660I
a = 0.41637 1.80557I
b = 0.212659 + 0.790964I
2.49821 1.98647I 1.56783 + 2.89756I
u = 0.202574 0.614660I
a = 0.41637 + 1.80557I
b = 0.212659 0.790964I
2.49821 + 1.98647I 1.56783 2.89756I
u = 1.316330 + 0.333742I
a = 0.408950 0.703118I
b = 0.036069 + 0.646778I
1.46111 + 6.76040I 0
u = 1.316330 0.333742I
a = 0.408950 + 0.703118I
b = 0.036069 0.646778I
1.46111 6.76040I 0
u = 0.240670 + 0.591040I
a = 1.50879 1.89532I
b = 0.38554 + 1.46577I
2.88733 + 4.52304I 0.03636 3.32255I
u = 0.240670 0.591040I
a = 1.50879 + 1.89532I
b = 0.38554 1.46577I
2.88733 4.52304I 0.03636 + 3.32255I
u = 1.371880 + 0.190150I
a = 0.51449 1.70845I
b = 0.965667 + 0.552199I
3.35341 + 2.44910I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.371880 0.190150I
a = 0.51449 + 1.70845I
b = 0.965667 0.552199I
3.35341 2.44910I 0
u = 1.381790 + 0.242632I
a = 0.70682 + 2.59552I
b = 0.377861 1.015230I
2.55895 + 5.12601I 0
u = 1.381790 0.242632I
a = 0.70682 2.59552I
b = 0.377861 + 1.015230I
2.55895 5.12601I 0
u = 1.39431 + 0.23988I
a = 0.79430 + 4.03936I
b = 0.47035 1.61370I
8.11020 7.60143I 0
u = 1.39431 0.23988I
a = 0.79430 4.03936I
b = 0.47035 + 1.61370I
8.11020 + 7.60143I 0
u = 1.40452 + 0.18151I
a = 1.20569 4.10928I
b = 0.00116 + 1.68427I
8.93491 0.61807I 0
u = 1.40452 0.18151I
a = 1.20569 + 4.10928I
b = 0.00116 1.68427I
8.93491 + 0.61807I 0
u = 1.42142 + 0.11111I
a = 1.39366 1.43200I
b = 0.813091 + 0.784592I
7.33747 + 1.34403I 0
u = 1.42142 0.11111I
a = 1.39366 + 1.43200I
b = 0.813091 0.784592I
7.33747 1.34403I 0
u = 1.41493 + 0.27859I
a = 1.41802 + 1.14138I
b = 1.235590 0.150942I
4.99311 + 7.43624I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41493 0.27859I
a = 1.41802 1.14138I
b = 1.235590 + 0.150942I
4.99311 7.43624I 0
u = 0.314249 + 0.443599I
a = 1.74200 + 2.01299I
b = 0.08624 1.45158I
3.45819 1.75596I 0.22172 + 1.56110I
u = 0.314249 0.443599I
a = 1.74200 2.01299I
b = 0.08624 + 1.45158I
3.45819 + 1.75596I 0.22172 1.56110I
u = 1.43910 + 0.36041I
a = 0.67098 + 3.42215I
b = 0.61263 1.61586I
10.5096 + 14.3678I 0
u = 1.43910 0.36041I
a = 0.67098 3.42215I
b = 0.61263 + 1.61586I
10.5096 14.3678I 0
u = 1.46087 + 0.32708I
a = 1.00755 3.48031I
b = 0.19562 + 1.75720I
11.89100 + 7.20080I 0
u = 1.46087 0.32708I
a = 1.00755 + 3.48031I
b = 0.19562 1.75720I
11.89100 7.20080I 0
u = 0.111943 + 0.439985I
a = 1.241660 0.569711I
b = 0.772681 0.211532I
1.51612 0.05304I 2.94270 + 1.44002I
u = 0.111943 0.439985I
a = 1.241660 + 0.569711I
b = 0.772681 + 0.211532I
1.51612 + 0.05304I 2.94270 1.44002I
u = 1.54580 + 0.02807I
a = 0.26431 + 4.14163I
b = 0.27010 1.83700I
16.1487 + 3.7905I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54580 0.02807I
a = 0.26431 4.14163I
b = 0.27010 + 1.83700I
16.1487 3.7905I 0
u = 0.0947755
a = 7.83548
b = 0.476249
1.21791 10.0970
10
II. I
u
2
=
hb, u
7
2u
6
2u
5
+4u
4
+2u
3
u
2
+au3, u
8
u
7
3u
6
+2u
5
+3u
4
2u1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ u
2
+ u + 3
0
a
10
=
u
2
+ 1
u
4
2u
2
a
3
=
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ u
2
+ u + 3
0
a
2
=
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ u
2
+ 2u + 3
u
3
+ u
a
7
=
1
0
a
11
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
6
=
u
3
2u
u
3
u
a
5
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
7
+ 10u
6
+ 7u
5
25u
4
9u
3
+ 12u
2
+ 8u + 13
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
8
, c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
8
, c
9
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.281371 1.128550I
b = 0
0.604279 1.131230I 2.43193 + 0.79885I
u = 1.180120 0.268597I
a = 0.281371 + 1.128550I
b = 0
0.604279 + 1.131230I 2.43193 0.79885I
u = 0.108090 + 0.747508I
a = 0.208670 + 0.825203I
b = 0
3.80435 2.57849I 5.57469 + 3.25625I
u = 0.108090 0.747508I
a = 0.208670 0.825203I
b = 0
3.80435 + 2.57849I 5.57469 3.25625I
u = 1.37100
a = 0.829189
b = 0
4.85780 8.00600
u = 1.334530 + 0.318930I
a = 0.284386 0.605794I
b = 0
0.73474 + 6.44354I 0.28408 3.92092I
u = 1.334530 0.318930I
a = 0.284386 + 0.605794I
b = 0
0.73474 6.44354I 0.28408 + 3.92092I
u = 0.463640
a = 2.74744
b = 0
0.799899 11.5750
14
III. I
u
3
= ha
2
+ 5b + 3a + 5, a
3
+ a
2
+ 4a + 5, u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
a
1
5
a
2
3
5
a 1
a
10
=
0
1
a
3
=
1
5
a
2
+
2
5
a 1
1
5
a
2
3
5
a 1
a
2
=
2
2
5
a
2
1
5
a
a
7
=
0
2
5
a
2
1
5
a
a
11
=
0
1
a
6
=
0
2
5
a
2
1
5
a
a
5
=
2
5
a
2
+
1
5
a
2
5
a
2
1
5
a
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9
5
a
2
+
13
5
a 5
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
u
3
+ 3u
2
+ 2u 1
c
6
, c
10
, c
11
u
3
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u + 1)
3
c
12
(u 1)
3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
y
3
5y
2
+ 10y 1
c
6
, c
10
, c
11
y
3
c
8
, c
9
, c
12
(y 1)
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.18504
b = 0.569840
0.531480 10.6090
u = 1.00000
a = 0.09252 + 2.05200I
b = 0.215080 1.307140I
4.66906 2.82812I 2.80443 + 4.65175I
u = 1.00000
a = 0.09252 2.05200I
b = 0.215080 + 1.307140I
4.66906 + 2.82812I 2.80443 4.65175I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
3
u
2
+ 2u 1)(u
52
+ 14u
51
+ ··· + 43u + 1)
c
2
((u 1)
8
)(u
3
+ u
2
1)(u
52
10u
51
+ ··· u + 1)
c
3
u
8
(u
3
u
2
+ 2u 1)(u
52
2u
51
+ ··· + 384u 256)
c
4
((u + 1)
8
)(u
3
u
2
+ 1)(u
52
10u
51
+ ··· u + 1)
c
5
(u
3
+ 3u
2
+ 2u 1)(u
8
+ 3u
7
+ ··· + 4u + 1)
· (u
52
+ 3u
51
+ ··· u 1)
c
6
u
3
(u
8
+ u
7
+ ··· 2u 1)(u
52
+ 2u
51
+ ··· 28u 8)
c
7
u
8
(u
3
+ u
2
+ 2u + 1)(u
52
2u
51
+ ··· + 384u 256)
c
8
, c
9
(u + 1)
3
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
52
+ 5u
51
+ ··· 14u + 1)
c
10
u
3
(u
8
u
7
+ ··· + 2u 1)(u
52
+ 2u
51
+ ··· 28u 8)
c
11
u
3
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
52
24u
51
+ ··· 1488u + 64)
c
12
(u 1)
3
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
52
+ 5u
51
+ ··· 14u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
3
+ 3y
2
+ 2y 1)(y
52
+ 58y
51
+ ··· 447y + 1)
c
2
, c
4
((y 1)
8
)(y
3
y
2
+ 2y 1)(y
52
14y
51
+ ··· 43y + 1)
c
3
, c
7
y
8
(y
3
+ 3y
2
+ 2y 1)(y
52
+ 54y
51
+ ··· + 606208y + 65536)
c
5
(y
3
5y
2
+ 10y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
52
61y
51
+ ··· 19y + 1)
c
6
, c
10
y
3
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
52
24y
51
+ ··· 1488y + 64)
c
8
, c
9
, c
12
(y 1)
3
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
52
47y
51
+ ··· 104y + 1)
c
11
y
3
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
52
+ 4y
51
+ ··· 498944y + 4096)
20