12n
0077
(K12n
0077
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 3 5 12 11 6 9 8
Solving Sequence
5,10 3,6
7 8 11 2 1 4 9 12
c
5
c
6
c
7
c
10
c
2
c
1
c
4
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
25
u
24
+ ··· + b + 1, u
22
3u
20
+ ··· + a + 4u, u
26
2u
25
+ ··· 2u 1i
I
u
2
= hb + 1, u
4
u
2
+ a + u + 2, u
5
u
4
+ u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
25
u
24
+· · ·+b +1, u
22
3u
20
+· · ·+a +4u, u
26
2u
25
+· · ·2u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
22
+ 3u
20
+ ··· 4u
2
4u
u
25
+ u
24
+ ··· u 1
a
6
=
1
u
2
a
7
=
u
9
3u
5
u
u
9
+ u
7
3u
5
+ 2u
3
u
a
8
=
u
7
2u
3
u
9
+ u
7
3u
5
+ 2u
3
u
a
11
=
u
u
3
+ u
a
2
=
u
25
+ u
24
+ ··· 5u 1
u
25
+ u
24
+ ··· u 1
a
1
=
u
9
3u
5
u
u
11
+ u
9
4u
7
+ 3u
5
3u
3
+ u
a
4
=
2u
25
+ 2u
24
+ ··· 7u 1
u
25
+ u
24
+ ··· 2u 1
a
9
=
u
3
u
5
u
3
+ u
a
12
=
u
5
u
u
7
+ u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
25
+ u
24
+ 8u
23
10u
22
26u
21
+ 30u
20
+ 57u
19
86u
18
103u
17
+ 156u
16
+ 148u
15
242u
14
181u
13
+ 278u
12
+ 205u
11
248u
10
197u
9
+
159u
8
+ 194u
7
60u
6
148u
5
+ 8u
4
+ 77u
3
+ 10u
2
19u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 34u
25
+ ··· + 68u + 1
c
2
, c
4
u
26
6u
25
+ ··· + 34u
2
1
c
3
, c
6
u
26
+ u
25
+ ··· + 96u + 32
c
5
, c
10
u
26
2u
25
+ ··· 2u 1
c
7
u
26
2u
25
+ ··· 2u 1
c
8
, c
9
, c
11
c
12
u
26
+ 6u
25
+ ··· + 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
78y
25
+ ··· 1224y + 1
c
2
, c
4
y
26
34y
25
+ ··· 68y + 1
c
3
, c
6
y
26
33y
25
+ ··· 1536y + 1024
c
5
, c
10
y
26
6y
25
+ ··· 10y + 1
c
7
y
26
54y
25
+ ··· 10y + 1
c
8
, c
9
, c
11
c
12
y
26
+ 30y
25
+ ··· + 18y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03768
a = 3.52363
b = 1.79564
14.3257 18.8510
u = 0.848363 + 0.365549I
a = 1.78442 1.39985I
b = 0.876527 + 0.552462I
2.09559 + 3.16364I 16.0021 6.5670I
u = 0.848363 0.365549I
a = 1.78442 + 1.39985I
b = 0.876527 0.552462I
2.09559 3.16364I 16.0021 + 6.5670I
u = 0.743105 + 0.536823I
a = 0.594036 0.232636I
b = 0.265907 0.097994I
1.42344 2.05884I 4.65256 + 4.58362I
u = 0.743105 0.536823I
a = 0.594036 + 0.232636I
b = 0.265907 + 0.097994I
1.42344 + 2.05884I 4.65256 4.58362I
u = 1.016900 + 0.465737I
a = 2.21366 + 1.97366I
b = 1.76028 0.15334I
11.56550 + 6.15142I 15.5995 5.2395I
u = 1.016900 0.465737I
a = 2.21366 1.97366I
b = 1.76028 + 0.15334I
11.56550 6.15142I 15.5995 + 5.2395I
u = 0.340992 + 0.772246I
a = 0.190362 0.001300I
b = 1.70063 + 0.08748I
9.33177 1.67049I 11.65109 + 0.28027I
u = 0.340992 0.772246I
a = 0.190362 + 0.001300I
b = 1.70063 0.08748I
9.33177 + 1.67049I 11.65109 0.28027I
u = 0.780793 + 0.228604I
a = 2.51035 + 0.76802I
b = 1.168300 + 0.232886I
2.90735 0.78726I 17.0746 + 5.9643I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.780793 0.228604I
a = 2.51035 0.76802I
b = 1.168300 0.232886I
2.90735 + 0.78726I 17.0746 5.9643I
u = 0.901624 + 0.824241I
a = 0.978749 0.966956I
b = 1.49560 0.03445I
3.16228 + 3.07757I 10.53156 2.75315I
u = 0.901624 0.824241I
a = 0.978749 + 0.966956I
b = 1.49560 + 0.03445I
3.16228 3.07757I 10.53156 + 2.75315I
u = 0.875285 + 0.858337I
a = 0.452866 0.465694I
b = 0.617869 + 0.854688I
5.39540 0.25204I 9.68980 0.25577I
u = 0.875285 0.858337I
a = 0.452866 + 0.465694I
b = 0.617869 0.854688I
5.39540 + 0.25204I 9.68980 + 0.25577I
u = 0.840955 + 0.925824I
a = 0.193479 + 0.004136I
b = 1.65874 0.26853I
2.27912 + 3.95861I 11.45131 0.83940I
u = 0.840955 0.925824I
a = 0.193479 0.004136I
b = 1.65874 + 0.26853I
2.27912 3.95861I 11.45131 + 0.83940I
u = 0.939409 + 0.834109I
a = 0.76938 + 1.23390I
b = 0.687301 0.869387I
5.19384 6.03805I 10.26289 + 5.25215I
u = 0.939409 0.834109I
a = 0.76938 1.23390I
b = 0.687301 + 0.869387I
5.19384 + 6.03805I 10.26289 5.25215I
u = 0.931297 + 0.895111I
a = 0.372833 + 0.308620I
b = 0.537292 + 0.017409I
10.10520 + 3.30342I 2.39471 2.26919I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.931297 0.895111I
a = 0.372833 0.308620I
b = 0.537292 0.017409I
10.10520 3.30342I 2.39471 + 2.26919I
u = 0.998011 + 0.849444I
a = 0.83951 1.88704I
b = 1.68410 + 0.28961I
2.78496 10.50130I 12.09690 + 5.41863I
u = 0.998011 0.849444I
a = 0.83951 + 1.88704I
b = 1.68410 0.28961I
2.78496 + 10.50130I 12.09690 5.41863I
u = 0.527536
a = 0.849795
b = 0.171524
0.708379 14.2100
u = 0.393456 + 0.342390I
a = 0.999444 + 0.387392I
b = 0.573413 0.271251I
0.780751 0.150062I 11.06268 0.12594I
u = 0.393456 0.342390I
a = 0.999444 0.387392I
b = 0.573413 + 0.271251I
0.780751 + 0.150062I 11.06268 + 0.12594I
7
II. I
u
2
= hb + 1, u
4
u
2
+ a + u + 2, u
5
u
4
+ u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
4
+ u
2
u 2
1
a
6
=
1
u
2
a
7
=
1
u
2
a
8
=
u
2
+ 1
u
2
a
11
=
u
u
3
+ u
a
2
=
u
4
+ u
2
u 3
1
a
1
=
1
0
a
4
=
u
4
+ u
2
u 2
1
a
9
=
u
3
u
4
u
3
u
2
+ 1
a
12
=
u
4
+ u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
+ 3u
2
u 14
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
6
u
5
c
4
(u + 1)
5
c
5
u
5
u
4
+ u
2
+ u 1
c
7
, c
11
, c
12
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
8
, c
9
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
10
u
5
+ u
4
u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
6
y
5
c
5
, c
10
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
c
7
, c
8
, c
9
c
11
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 0.278580 1.055720I
b = 1.00000
0.17487 + 2.21397I 12.88087 4.04855I
u = 0.758138 0.584034I
a = 0.278580 + 1.055720I
b = 1.00000
0.17487 2.21397I 12.88087 + 4.04855I
u = 0.935538 + 0.903908I
a = 0.020316 + 0.590570I
b = 1.00000
9.31336 3.33174I 13.28666 + 2.53508I
u = 0.935538 0.903908I
a = 0.020316 0.590570I
b = 1.00000
9.31336 + 3.33174I 13.28666 2.53508I
u = 0.645200
a = 2.40221
b = 1.00000
2.52712 13.6650
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
26
+ 34u
25
+ ··· + 68u + 1)
c
2
((u 1)
5
)(u
26
6u
25
+ ··· + 34u
2
1)
c
3
, c
6
u
5
(u
26
+ u
25
+ ··· + 96u + 32)
c
4
((u + 1)
5
)(u
26
6u
25
+ ··· + 34u
2
1)
c
5
(u
5
u
4
+ u
2
+ u 1)(u
26
2u
25
+ ··· 2u 1)
c
7
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
26
2u
25
+ ··· 2u 1)
c
8
, c
9
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
26
+ 6u
25
+ ··· + 10u + 1)
c
10
(u
5
+ u
4
u
2
+ u + 1)(u
26
2u
25
+ ··· 2u 1)
c
11
, c
12
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
26
+ 6u
25
+ ··· + 10u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
26
78y
25
+ ··· 1224y + 1)
c
2
, c
4
((y 1)
5
)(y
26
34y
25
+ ··· 68y + 1)
c
3
, c
6
y
5
(y
26
33y
25
+ ··· 1536y + 1024)
c
5
, c
10
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
26
6y
25
+ ··· 10y + 1)
c
7
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
26
54y
25
+ ··· 10y + 1)
c
8
, c
9
, c
11
c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
26
+ 30y
25
+ ··· + 18y + 1)
13