12n
0078
(K12n
0078
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 8 11 3 1 12 6 10 9
Solving Sequence
1,8 4,9
3 2 5 7 12 10 11 6
c
8
c
3
c
1
c
4
c
7
c
12
c
9
c
11
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h37387481608u
36
262071379227u
35
+ ··· + 62312469363b + 37745018210,
39879980401u
36
353616847554u
35
+ ··· + 62312469363a + 919059301277,
u
37
8u
36
+ ··· + 19u 1i
I
u
2
= hb, u
4
u
3
4u
2
+ a 3u 3, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.74×10
10
u
36
2.62×10
11
u
35
+· · ·+6.23×10
10
b+3.77×10
10
, 3.99×10
10
u
36
3.54 × 10
11
u
35
+ · · · + 6.23 × 10
10
a + 9.19 × 10
11
, u
37
8u
36
+ · · · + 19u 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
0.640000u
36
+ 5.67490u
35
+ ··· + 118.964u 14.7492
0.600000u
36
+ 4.20576u
35
+ ··· + 2.58902u 0.605738
a
9
=
1
u
2
a
3
=
1.24000u
36
+ 9.88066u
35
+ ··· + 121.553u 15.3549
0.600000u
36
+ 4.20576u
35
+ ··· + 2.58902u 0.605738
a
2
=
0.440000u
36
+ 4.28395u
35
+ ··· + 104.318u 12.1296
0.400000u
36
+ 2.79424u
35
+ ··· + 2.41098u 0.394262
a
5
=
0.600000u
36
+ 4.20165u
35
+ ··· + 21.8826u 3.88735
0.400000u
36
+ 2.79424u
35
+ ··· + 2.41098u 0.394262
a
7
=
0.394262u
36
+ 2.75410u
35
+ ··· + 35.8645u 5.08000
0.598354u
36
+ 4.78683u
35
+ ··· + 7.51265u 0.600000
a
12
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
11
=
u
3
2u
u
5
+ 3u
3
+ u
a
6
=
1.00000u
36
+ 6.99588u
35
+ ··· + 24.2936u 4.28162
0.400000u
36
+ 2.79424u
35
+ ··· + 2.41098u 0.394262
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
126456874109
20770823121
u
36
+
325863614327
6923607707
u
35
+ ··· +
5835323526623
20770823121
u
551008395754
20770823121
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
37
+ 12u
36
+ ··· + 5u + 1
c
2
, c
4
u
37
6u
36
+ ··· 3u + 1
c
3
, c
7
u
37
u
36
+ ··· + 120u
2
+ 32
c
5
u
37
+ 2u
36
+ ··· + 3u + 1
c
6
, c
10
u
37
+ 2u
36
+ ··· + 3u + 1
c
8
, c
9
, c
11
c
12
u
37
8u
36
+ ··· + 19u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
+ 32y
36
+ ··· + 5y 1
c
2
, c
4
y
37
12y
36
+ ··· + 5y 1
c
3
, c
7
y
37
+ 33y
36
+ ··· 7680y 1024
c
5
y
37
40y
36
+ ··· + 19y 1
c
6
, c
10
y
37
8y
36
+ ··· + 19y 1
c
8
, c
9
, c
11
c
12
y
37
+ 44y
36
+ ··· + 99y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.192278 + 0.981446I
a = 0.020576 0.394070I
b = 0.028151 + 0.615473I
2.37817 + 2.37893I 2.00000 4.24354I
u = 0.192278 0.981446I
a = 0.020576 + 0.394070I
b = 0.028151 0.615473I
2.37817 2.37893I 2.00000 + 4.24354I
u = 0.954498 + 0.071334I
a = 0.13625 + 3.34385I
b = 0.22449 1.57573I
7.67323 + 3.34146I 7.54708 2.94673I
u = 0.954498 0.071334I
a = 0.13625 3.34385I
b = 0.22449 + 1.57573I
7.67323 3.34146I 7.54708 + 2.94673I
u = 0.739019 + 0.820681I
a = 0.80030 2.64862I
b = 0.02142 + 1.55446I
5.46691 + 2.17037I 0
u = 0.739019 0.820681I
a = 0.80030 + 2.64862I
b = 0.02142 1.55446I
5.46691 2.17037I 0
u = 0.488581 + 0.716463I
a = 0.400880 + 0.540394I
b = 0.929621 0.055392I
0.60086 + 3.42978I 1.46957 8.06302I
u = 0.488581 0.716463I
a = 0.400880 0.540394I
b = 0.929621 + 0.055392I
0.60086 3.42978I 1.46957 + 8.06302I
u = 0.694171 + 0.952511I
a = 0.57988 + 2.67460I
b = 0.43869 1.52488I
4.63566 + 8.76465I 0
u = 0.694171 0.952511I
a = 0.57988 2.67460I
b = 0.43869 + 1.52488I
4.63566 8.76465I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.301349 + 0.644967I
a = 0.44045 + 2.61190I
b = 0.171200 0.710425I
2.48892 + 1.77260I 1.52089 2.95783I
u = 0.301349 0.644967I
a = 0.44045 2.61190I
b = 0.171200 + 0.710425I
2.48892 1.77260I 1.52089 + 2.95783I
u = 0.337610 + 0.584660I
a = 1.40228 + 3.03617I
b = 0.36360 1.42665I
2.83785 4.34213I 1.01036 + 2.76263I
u = 0.337610 0.584660I
a = 1.40228 3.03617I
b = 0.36360 + 1.42665I
2.83785 + 4.34213I 1.01036 2.76263I
u = 0.530968 + 0.127903I
a = 0.409091 0.456941I
b = 0.495562 + 0.299085I
1.138660 + 0.126784I 8.90691 0.21757I
u = 0.530968 0.127903I
a = 0.409091 + 0.456941I
b = 0.495562 0.299085I
1.138660 0.126784I 8.90691 + 0.21757I
u = 0.361376 + 0.397065I
a = 1.91674 3.19790I
b = 0.08394 + 1.41819I
3.38035 + 1.79092I 0.30116 2.50097I
u = 0.361376 0.397065I
a = 1.91674 + 3.19790I
b = 0.08394 1.41819I
3.38035 1.79092I 0.30116 + 2.50097I
u = 0.05375 + 1.50789I
a = 0.41135 1.87901I
b = 0.31409 + 1.45132I
2.96990 + 0.48951I 0
u = 0.05375 1.50789I
a = 0.41135 + 1.87901I
b = 0.31409 1.45132I
2.96990 0.48951I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.121575 + 0.445561I
a = 0.633975 + 0.683934I
b = 0.744443 + 0.181579I
1.49379 + 0.01486I 3.88474 1.23232I
u = 0.121575 0.445561I
a = 0.633975 0.683934I
b = 0.744443 0.181579I
1.49379 0.01486I 3.88474 + 1.23232I
u = 0.04039 + 1.56760I
a = 0.458186 0.041159I
b = 1.179650 + 0.205890I
8.59444 + 0.63473I 0
u = 0.04039 1.56760I
a = 0.458186 + 0.041159I
b = 1.179650 0.205890I
8.59444 0.63473I 0
u = 0.08929 + 1.58859I
a = 0.45250 + 1.92403I
b = 0.60720 1.42349I
4.65231 5.85535I 0
u = 0.08929 1.58859I
a = 0.45250 1.92403I
b = 0.60720 + 1.42349I
4.65231 + 5.85535I 0
u = 0.08760 + 1.59752I
a = 0.01097 + 2.27117I
b = 0.029458 1.097490I
10.20710 + 3.22026I 0
u = 0.08760 1.59752I
a = 0.01097 2.27117I
b = 0.029458 + 1.097490I
10.20710 3.22026I 0
u = 0.14093 + 1.60627I
a = 0.520990 + 0.031249I
b = 1.201680 + 0.152602I
8.46942 + 5.78175I 0
u = 0.14093 1.60627I
a = 0.520990 0.031249I
b = 1.201680 0.152602I
8.46942 5.78175I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.23304 + 1.62264I
a = 0.36642 2.02217I
b = 0.30906 + 1.52120I
2.61045 + 5.89112I 0
u = 0.23304 1.62264I
a = 0.36642 + 2.02217I
b = 0.30906 1.52120I
2.61045 5.89112I 0
u = 0.21905 + 1.68997I
a = 0.36567 + 1.99824I
b = 0.62038 1.45655I
4.28516 + 12.41430I 0
u = 0.21905 1.68997I
a = 0.36567 1.99824I
b = 0.62038 + 1.45655I
4.28516 12.41430I 0
u = 0.05172 + 1.71102I
a = 0.004613 0.307882I
b = 0.004397 + 0.596568I
11.96180 + 3.35478I 0
u = 0.05172 1.71102I
a = 0.004613 + 0.307882I
b = 0.004397 0.596568I
11.96180 3.35478I 0
u = 0.0937286
a = 7.36583
b = 0.476600
1.21783 10.0460
8
II. I
u
2
= hb, u
4
u
3
4u
2
+ a 3u 3, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
u
4
+ u
3
+ 4u
2
+ 3u + 3
0
a
9
=
1
u
2
a
3
=
u
4
+ u
3
+ 4u
2
+ 3u + 3
0
a
2
=
u
4
+ u
3
+ 4u
2
+ 3u + 3
u
a
5
=
0
u
a
7
=
1
0
a
12
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
11
=
u
3
2u
u
4
u
3
3u
2
2u 1
a
6
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
4
+ 6u
3
+ 28u
2
+ 17u + 12
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
7
u
5
c
4
(u + 1)
5
c
5
, c
8
, c
9
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
6
u
5
+ u
4
u
2
+ u + 1
c
10
u
5
u
4
+ u
2
+ u 1
c
11
, c
12
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
8
, c
9
c
11
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
6
, c
10
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.278580 + 1.055720I
b = 0
3.46474 2.21397I 6.65223 + 4.39723I
u = 0.233677 0.885557I
a = 0.278580 1.055720I
b = 0
3.46474 + 2.21397I 6.65223 4.39723I
u = 0.416284
a = 2.40221
b = 0
0.762751 9.55270
u = 0.05818 + 1.69128I
a = 0.020316 + 0.590570I
b = 0
12.60320 3.33174I 9.12414 + 2.18947I
u = 0.05818 1.69128I
a = 0.020316 0.590570I
b = 0
12.60320 + 3.33174I 9.12414 2.18947I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
37
+ 12u
36
+ ··· + 5u + 1)
c
2
((u 1)
5
)(u
37
6u
36
+ ··· 3u + 1)
c
3
, c
7
u
5
(u
37
u
36
+ ··· + 120u
2
+ 32)
c
4
((u + 1)
5
)(u
37
6u
36
+ ··· 3u + 1)
c
5
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
37
+ 2u
36
+ ··· + 3u + 1)
c
6
(u
5
+ u
4
u
2
+ u + 1)(u
37
+ 2u
36
+ ··· + 3u + 1)
c
8
, c
9
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
37
8u
36
+ ··· + 19u 1)
c
10
(u
5
u
4
+ u
2
+ u 1)(u
37
+ 2u
36
+ ··· + 3u + 1)
c
11
, c
12
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
37
8u
36
+ ··· + 19u 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
37
+ 32y
36
+ ··· + 5y 1)
c
2
, c
4
((y 1)
5
)(y
37
12y
36
+ ··· + 5y 1)
c
3
, c
7
y
5
(y
37
+ 33y
36
+ ··· 7680y 1024)
c
5
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
37
40y
36
+ ··· + 19y 1)
c
6
, c
10
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
37
8y
36
+ ··· + 19y 1)
c
8
, c
9
, c
11
c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
37
+ 44y
36
+ ··· + 99y 1)
14