10
132
(K10n
13
)
A knot diagram
1
Linearized knot diagam
5 10 7 6 2 4 10 7 3 8
Solving Sequence
3,7 4,10
8 2 6 5 1 9
c
3
c
7
c
2
c
6
c
5
c
1
c
9
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
4
5u
3
11u
2
+ 9b 14u 1, 4u
4
u
3
22u
2
+ 9a u + 7, u
5
+ 6u
3
+ u + 1i
I
u
2
= hb, u
2
+ a u 2, u
3
+ u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 8 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−2u
4
5u
3
11u
2
+9b14u1, 4u
4
u
3
22u
2
+9au+7, u
5
+6u
3
+u+1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
4
9
u
4
+
1
9
u
3
+ ··· +
1
9
u
7
9
2
9
u
4
+
5
9
u
3
+ ··· +
14
9
u +
1
9
a
8
=
2
9
u
4
4
9
u
3
+ ···
13
9
u
8
9
1
3
u
4
2
3
u
3
+ ··· +
4
3
u
1
3
a
2
=
1
3
u
4
1
3
u
3
+ ···
7
3
u +
1
3
1
9
u
4
+
2
9
u
3
+ ···
7
9
u
5
9
a
6
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
1
=
5
9
u
4
+
1
9
u
3
+ ···
17
9
u +
2
9
5
9
u
4
+
17
9
u
3
+ ···
10
9
u
2
9
a
9
=
2
9
u
4
4
9
u
3
+ ···
13
9
u
8
9
2
9
u
4
+
5
9
u
3
+ ··· +
14
9
u +
1
9
(ii) Obstruction class = 1
(iii) Cusp Shapes =
10
3
u
4
2
3
u
3
+
61
3
u
2
11
3
u +
17
3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
5
2u
4
+ 2u
3
+ u 1
c
2
, c
9
u
5
+ u
4
+ 17u
3
4u
2
+ 20u 8
c
3
, c
4
, c
6
u
5
+ 6u
3
+ u 1
c
7
, c
10
u
5
4u
4
+ u
3
+ 5u
2
+ 6u 1
c
8
u
5
+ 14u
4
+ 53u
3
+ 21u
2
+ 46u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
5
+ 6y
3
+ y 1
c
2
, c
9
y
5
+ 33y
4
+ 337y
3
+ 680y
2
+ 336y 64
c
3
, c
4
, c
6
y
5
+ 12y
4
+ 38y
3
+ 12y
2
+ y 1
c
7
, c
10
y
5
14y
4
+ 53y
3
21y
2
+ 46y 1
c
8
y
5
90y
4
+ 2313y
3
+ 4407y
2
+ 2074y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.238576 + 0.571771I
a = 1.43645 + 0.65503I
b = 0.029437 + 1.140530I
1.70245 1.37362I 0.55634 + 3.01933I
u = 0.238576 0.571771I
a = 1.43645 0.65503I
b = 0.029437 1.140530I
1.70245 + 1.37362I 0.55634 3.01933I
u = 0.446847
a = 0.331534
b = 0.380649
0.907840 11.5570
u = 0.01515 + 2.41455I
a = 0.102214 1.095320I
b = 0.66089 3.96349I
16.0529 4.0569I 0.27760 + 1.88627I
u = 0.01515 2.41455I
a = 0.102214 + 1.095320I
b = 0.66089 + 3.96349I
16.0529 + 4.0569I 0.27760 1.88627I
5
II. I
u
2
= hb, u
2
+ a u 2, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
u
2
+ u + 2
0
a
8
=
u
2
+ u + 2
u
a
2
=
1
0
a
6
=
u
u
2
u 1
a
5
=
u
2
+ 1
u
2
u 1
a
1
=
0
u
a
9
=
u
2
+ u + 2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 3u + 3
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
u
2
+ 1
c
2
, c
9
u
3
c
3
, c
4
u
3
+ u
2
+ 2u + 1
c
5
u
3
+ u
2
1
c
6
u
3
u
2
+ 2u 1
c
7
(u 1)
3
c
8
, c
10
(u + 1)
3
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
3
y
2
+ 2y 1
c
2
, c
9
y
3
c
3
, c
4
, c
6
y
3
+ 3y
2
+ 2y 1
c
7
, c
8
, c
10
(y 1)
3
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 0
4.66906 2.82812I 0.69240 + 3.35914I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 0
4.66906 + 2.82812I 0.69240 3.35914I
u = 0.569840
a = 1.75488
b = 0
0.531480 1.61520
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 1)(u
5
2u
4
+ 2u
3
+ u 1)
c
2
, c
9
u
3
(u
5
+ u
4
+ 17u
3
4u
2
+ 20u 8)
c
3
, c
4
(u
3
+ u
2
+ 2u + 1)(u
5
+ 6u
3
+ u 1)
c
5
(u
3
+ u
2
1)(u
5
2u
4
+ 2u
3
+ u 1)
c
6
(u
3
u
2
+ 2u 1)(u
5
+ 6u
3
+ u 1)
c
7
(u 1)
3
(u
5
4u
4
+ u
3
+ 5u
2
+ 6u 1)
c
8
(u + 1)
3
(u
5
+ 14u
4
+ 53u
3
+ 21u
2
+ 46u + 1)
c
10
(u + 1)
3
(u
5
4u
4
+ u
3
+ 5u
2
+ 6u 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
y
2
+ 2y 1)(y
5
+ 6y
3
+ y 1)
c
2
, c
9
y
3
(y
5
+ 33y
4
+ 337y
3
+ 680y
2
+ 336y 64)
c
3
, c
4
, c
6
(y
3
+ 3y
2
+ 2y 1)(y
5
+ 12y
4
+ 38y
3
+ 12y
2
+ y 1)
c
7
, c
10
(y 1)
3
(y
5
14y
4
+ 53y
3
21y
2
+ 46y 1)
c
8
(y 1)
3
(y
5
90y
4
+ 2313y
3
+ 4407y
2
+ 2074y 1)
11