12n
0081
(K12n
0081
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 9 3 10 12 6 1 8 11
Solving Sequence
5,9 3,6
7 10 2 1 11 4 12 8
c
5
c
6
c
9
c
2
c
1
c
10
c
4
c
12
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h5.53432 × 10
85
u
57
8.84907 × 10
85
u
56
+ ··· + 1.15940 × 10
86
b 1.39649 × 10
85
,
2.61940 × 10
85
u
57
5.40341 × 10
85
u
56
+ ··· + 2.31879 × 10
85
a 2.38511 × 10
85
, u
58
2u
57
+ ··· u + 1i
I
u
2
= hb + 1, 2u
7
+ 3u
6
5u
5
7u
4
+ 4u
3
+ 3u
2
+ a + 4, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.53 × 10
85
u
57
8.85 × 10
85
u
56
+ · · · + 1.16 × 10
86
b 1.40 × 10
85
, 2.62 ×
10
85
u
57
5.40×10
85
u
56
+· · ·+2.32×10
85
a2.39×10
85
, u
58
2u
57
+· · ·u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
1.12964u
57
+ 2.33027u
56
+ ··· 0.0189625u + 1.02860
0.477346u
57
+ 0.763249u
56
+ ··· + 1.48654u + 0.120450
a
6
=
1
u
2
a
7
=
0.742987u
57
+ 1.16928u
56
+ ··· + 2.16233u + 0.683441
0.147869u
57
+ 0.246417u
56
+ ··· + 0.573664u + 0.388653
a
10
=
u
u
3
+ u
a
2
=
1.60699u
57
+ 3.09352u
56
+ ··· + 1.46757u + 1.14905
0.477346u
57
+ 0.763249u
56
+ ··· + 1.48654u + 0.120450
a
1
=
0.768033u
57
+ 1.20204u
56
+ ··· + 2.30970u + 0.755400
0.0250459u
57
0.0327586u
56
+ ··· 0.147371u 0.0719590
a
11
=
0.238196u
57
0.406882u
56
+ ··· 2.56618u 0.552552
0.0179618u
57
+ 0.0170715u
56
+ ··· + 0.925015u 0.0202253
a
4
=
1.20110u
57
+ 2.45056u
56
+ ··· + 0.266941u + 1.22004
0.484972u
57
+ 0.772733u
56
+ ··· + 1.53536u + 0.143087
a
12
=
0.842522u
57
+ 1.44178u
56
+ ··· + 3.31034u + 1.38391
0.240620u
57
0.365565u
56
+ ··· 0.386959u 0.465919
a
8
=
0.606276u
57
+ 0.938630u
56
+ ··· + 1.72832u + 0.349414
0.275800u
57
+ 0.459793u
56
+ ··· + 0.913732u + 0.679907
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.20777u
57
+ 0.883719u
56
+ ··· 4.35534u 9.32260
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 19u
57
+ ··· + 1227u + 1
c
2
, c
4
u
58
9u
57
+ ··· 43u + 1
c
3
, c
6
u
58
+ 7u
57
+ ··· + 2688u + 256
c
5
, c
9
u
58
+ 2u
57
+ ··· + u + 1
c
7
u
58
2u
57
+ ··· + 42759u + 8017
c
8
, c
11
u
58
+ 2u
57
+ ··· + 7u + 1
c
10
, c
12
u
58
+ 18u
57
+ ··· + 11u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
+ 49y
57
+ ··· 1420135y + 1
c
2
, c
4
y
58
19y
57
+ ··· 1227y + 1
c
3
, c
6
y
58
51y
57
+ ··· 3719168y + 65536
c
5
, c
9
y
58
14y
57
+ ··· 11y + 1
c
7
y
58
+ 22y
57
+ ··· + 71584681y + 64272289
c
8
, c
11
y
58
18y
57
+ ··· 11y + 1
c
10
, c
12
y
58
+ 46y
57
+ ··· 251y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.757964 + 0.476676I
a = 0.211091 1.285110I
b = 0.733524 + 1.001690I
1.39650 + 7.38606I 8.93309 9.73199I
u = 0.757964 0.476676I
a = 0.211091 + 1.285110I
b = 0.733524 1.001690I
1.39650 7.38606I 8.93309 + 9.73199I
u = 0.733536 + 0.503634I
a = 0.207333 + 1.258410I
b = 0.622314 0.960850I
1.93231 1.77262I 7.23531 + 4.32887I
u = 0.733536 0.503634I
a = 0.207333 1.258410I
b = 0.622314 + 0.960850I
1.93231 + 1.77262I 7.23531 4.32887I
u = 0.150361 + 0.862598I
a = 0.283573 + 0.156210I
b = 0.296125 0.128802I
1.86705 2.42873I 2.94093 + 3.38399I
u = 0.150361 0.862598I
a = 0.283573 0.156210I
b = 0.296125 + 0.128802I
1.86705 + 2.42873I 2.94093 3.38399I
u = 0.729010 + 0.900450I
a = 0.278287 + 0.714115I
b = 0.512624 0.941655I
1.79327 3.50993I 8.00000 + 0.I
u = 0.729010 0.900450I
a = 0.278287 0.714115I
b = 0.512624 + 0.941655I
1.79327 + 3.50993I 8.00000 + 0.I
u = 0.707674 + 0.373154I
a = 0.190149 1.303650I
b = 0.946128 + 0.714336I
3.61079 + 2.96792I 16.6955 7.6738I
u = 0.707674 0.373154I
a = 0.190149 + 1.303650I
b = 0.946128 0.714336I
3.61079 2.96792I 16.6955 + 7.6738I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.828609 + 0.884235I
a = 0.466481 + 0.852083I
b = 0.613518 1.215300I
8.38484 8.22953I 0
u = 0.828609 0.884235I
a = 0.466481 0.852083I
b = 0.613518 + 1.215300I
8.38484 + 8.22953I 0
u = 0.827954 + 0.902716I
a = 0.485901 0.807428I
b = 0.663928 + 1.180430I
9.06399 + 2.20407I 0
u = 0.827954 0.902716I
a = 0.485901 + 0.807428I
b = 0.663928 1.180430I
9.06399 2.20407I 0
u = 0.758547 + 0.131049I
a = 0.057075 + 0.644979I
b = 1.47907 0.32636I
1.42978 4.33965I 13.8036 + 5.9098I
u = 0.758547 0.131049I
a = 0.057075 0.644979I
b = 1.47907 + 0.32636I
1.42978 + 4.33965I 13.8036 5.9098I
u = 0.738708 + 0.184329I
a = 0.061286 0.888067I
b = 1.37022 + 0.42544I
1.16921 0.90179I 13.10774 0.16863I
u = 0.738708 0.184329I
a = 0.061286 + 0.888067I
b = 1.37022 0.42544I
1.16921 + 0.90179I 13.10774 + 0.16863I
u = 0.771402 + 0.979679I
a = 0.418138 0.593129I
b = 0.735262 + 0.914814I
4.73839 + 0.20490I 0
u = 0.771402 0.979679I
a = 0.418138 + 0.593129I
b = 0.735262 0.914814I
4.73839 0.20490I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.725261
a = 0.320581
b = 1.46548
5.24110 20.4300
u = 1.010850 + 0.787058I
a = 0.82799 1.23601I
b = 0.817179 + 0.885590I
7.78595 + 1.97085I 0
u = 1.010850 0.787058I
a = 0.82799 + 1.23601I
b = 0.817179 0.885590I
7.78595 1.97085I 0
u = 0.747268 + 1.058050I
a = 0.395621 + 0.438566I
b = 0.813908 0.746877I
1.08274 + 2.68379I 0
u = 0.747268 1.058050I
a = 0.395621 0.438566I
b = 0.813908 + 0.746877I
1.08274 2.68379I 0
u = 0.562499 + 0.418736I
a = 0.47527 + 1.47284I
b = 0.667885 0.412194I
0.84022 1.37563I 6.44015 + 4.83399I
u = 0.562499 0.418736I
a = 0.47527 1.47284I
b = 0.667885 + 0.412194I
0.84022 + 1.37563I 6.44015 4.83399I
u = 1.021400 + 0.806453I
a = 0.76138 + 1.27349I
b = 0.872213 0.895148I
8.43324 + 4.16970I 0
u = 1.021400 0.806453I
a = 0.76138 1.27349I
b = 0.872213 + 0.895148I
8.43324 4.16970I 0
u = 0.464370 + 0.505657I
a = 2.19485 + 0.67921I
b = 0.485517 + 0.294137I
2.55163 1.79957I 5.78089 + 4.77562I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.464370 0.505657I
a = 2.19485 0.67921I
b = 0.485517 0.294137I
2.55163 + 1.79957I 5.78089 4.77562I
u = 1.302260 + 0.215056I
a = 0.724570 0.182519I
b = 0.657572 + 0.133991I
1.94270 1.43075I 0
u = 1.302260 0.215056I
a = 0.724570 + 0.182519I
b = 0.657572 0.133991I
1.94270 + 1.43075I 0
u = 0.429870 + 0.520549I
a = 2.51794 0.86930I
b = 0.605155 0.307118I
2.25105 3.87043I 6.73442 + 0.34200I
u = 0.429870 0.520549I
a = 2.51794 + 0.86930I
b = 0.605155 + 0.307118I
2.25105 + 3.87043I 6.73442 0.34200I
u = 0.831079 + 1.050820I
a = 0.560219 0.451422I
b = 0.967229 + 0.864793I
8.14146 2.33310I 0
u = 0.831079 1.050820I
a = 0.560219 + 0.451422I
b = 0.967229 0.864793I
8.14146 + 2.33310I 0
u = 0.834599 + 1.071090I
a = 0.562906 + 0.405830I
b = 0.998315 0.821896I
7.22076 + 8.31025I 0
u = 0.834599 1.071090I
a = 0.562906 0.405830I
b = 0.998315 + 0.821896I
7.22076 8.31025I 0
u = 1.113430 + 0.804823I
a = 0.544448 1.077950I
b = 0.972357 + 0.706110I
0.57880 2.87211I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.113430 0.804823I
a = 0.544448 + 1.077950I
b = 0.972357 0.706110I
0.57880 + 2.87211I 0
u = 1.089310 + 0.851827I
a = 0.480537 + 1.230050I
b = 1.055730 0.794375I
3.73913 + 6.53652I 0
u = 1.089310 0.851827I
a = 0.480537 1.230050I
b = 1.055730 + 0.794375I
3.73913 6.53652I 0
u = 1.083120 + 0.904822I
a = 0.329084 + 1.363660I
b = 1.19685 0.84814I
7.31786 + 9.44466I 0
u = 1.083120 0.904822I
a = 0.329084 1.363660I
b = 1.19685 + 0.84814I
7.31786 9.44466I 0
u = 1.08928 + 0.91350I
a = 0.284481 1.359270I
b = 1.22723 + 0.83313I
6.3813 15.5051I 0
u = 1.08928 0.91350I
a = 0.284481 + 1.359270I
b = 1.22723 0.83313I
6.3813 + 15.5051I 0
u = 1.11634 + 0.88115I
a = 0.344161 1.208590I
b = 1.144810 + 0.743437I
0.06948 9.72018I 0
u = 1.11634 0.88115I
a = 0.344161 + 1.208590I
b = 1.144810 0.743437I
0.06948 + 9.72018I 0
u = 1.43228 + 0.28779I
a = 0.602581 + 0.217299I
b = 0.746089 0.144890I
3.47621 + 6.76006I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43228 0.28779I
a = 0.602581 0.217299I
b = 0.746089 + 0.144890I
3.47621 6.76006I 0
u = 1.47635
a = 0.603436
b = 0.732744
7.57251 0
u = 0.310564 + 0.379876I
a = 2.83067 3.52170I
b = 0.888180 0.051391I
2.59810 0.31577I 24.5055 6.4182I
u = 0.310564 0.379876I
a = 2.83067 + 3.52170I
b = 0.888180 + 0.051391I
2.59810 + 0.31577I 24.5055 + 6.4182I
u = 0.485729
a = 2.58176
b = 1.10599
2.22309 1.58660
u = 0.030516 + 0.465574I
a = 7.05708 0.52655I
b = 1.088060 0.022657I
0.94270 + 2.75058I 17.8156 8.6403I
u = 0.030516 0.465574I
a = 7.05708 + 0.52655I
b = 1.088060 + 0.022657I
0.94270 2.75058I 17.8156 + 8.6403I
u = 0.418573
a = 1.13637
b = 0.0289678
0.881313 11.5040
10
II. I
u
2
=
hb+1, 2u
7
+3u
6
5u
5
7u
4
+4u
3
+3u
2
+a+4, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
2u
7
3u
6
+ 5u
5
+ 7u
4
4u
3
3u
2
4
1
a
6
=
1
u
2
a
7
=
1
u
2
a
10
=
u
u
3
+ u
a
2
=
2u
7
3u
6
+ 5u
5
+ 7u
4
4u
3
3u
2
5
1
a
1
=
1
0
a
11
=
u
3
2u
u
3
+ u
a
4
=
2u
7
3u
6
+ 5u
5
+ 7u
4
4u
3
3u
2
4
1
a
12
=
u
6
+ 3u
4
2u
2
1
u
6
2u
4
+ u
2
a
8
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
7
16u
6
+ 18u
5
+ 36u
4
15u
3
13u
2
+ 4u 37
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
, c
7
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
8
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
11
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
12
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
7
, c
9
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
8
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
10
, c
12
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.615431 + 0.295452I
b = 1.00000
2.68559 1.13123I 13.04860 0.79986I
u = 1.180120 0.268597I
a = 0.615431 0.295452I
b = 1.00000
2.68559 + 1.13123I 13.04860 + 0.79986I
u = 0.108090 + 0.747508I
a = 1.68119 + 0.49658I
b = 1.00000
0.51448 2.57849I 11.13007 + 2.07507I
u = 0.108090 0.747508I
a = 1.68119 0.49658I
b = 1.00000
0.51448 + 2.57849I 11.13007 2.07507I
u = 1.37100
a = 0.532015
b = 1.00000
8.14766 21.6800
u = 1.334530 + 0.318930I
a = 0.473764 0.240160I
b = 1.00000
4.02461 + 6.44354I 15.6905 2.6628I
u = 1.334530 0.318930I
a = 0.473764 + 0.240160I
b = 1.00000
4.02461 6.44354I 15.6905 + 2.6628I
u = 0.463640
a = 4.65198
b = 1.00000
2.48997 37.5820
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
58
+ 19u
57
+ ··· + 1227u + 1)
c
2
((u 1)
8
)(u
58
9u
57
+ ··· 43u + 1)
c
3
, c
6
u
8
(u
58
+ 7u
57
+ ··· + 2688u + 256)
c
4
((u + 1)
8
)(u
58
9u
57
+ ··· 43u + 1)
c
5
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
58
+ 2u
57
+ ··· + u + 1)
c
7
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
58
2u
57
+ ··· + 42759u + 8017)
c
8
(u
8
u
7
+ ··· + 2u 1)(u
58
+ 2u
57
+ ··· + 7u + 1)
c
9
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
58
+ 2u
57
+ ··· + u + 1)
c
10
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
58
+ 18u
57
+ ··· + 11u + 1)
c
11
(u
8
+ u
7
+ ··· 2u 1)(u
58
+ 2u
57
+ ··· + 7u + 1)
c
12
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
58
+ 18u
57
+ ··· + 11u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
58
+ 49y
57
+ ··· 1420135y + 1)
c
2
, c
4
((y 1)
8
)(y
58
19y
57
+ ··· 1227y + 1)
c
3
, c
6
y
8
(y
58
51y
57
+ ··· 3719168y + 65536)
c
5
, c
9
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
58
14y
57
+ ··· 11y + 1)
c
7
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
58
+ 22y
57
+ ··· + 71584681y + 64272289)
c
8
, c
11
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
58
18y
57
+ ··· 11y + 1)
c
10
, c
12
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
58
+ 46y
57
+ ··· 251y + 1)
16