12n
0083
(K12n
0083
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 10 12 5 1 8 11
Solving Sequence
2,5 3,10
6 1 11 4 7 9 12 8
c
2
c
5
c
1
c
10
c
4
c
6
c
9
c
12
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−7.39937 × 10
54
u
61
7.95828 × 10
55
u
60
+ ··· + 9.36658 × 10
54
b + 4.21903 × 10
55
,
4.20292 × 10
54
u
61
2.34926 × 10
55
u
60
+ ··· + 4.68329 × 10
54
a + 1.31817 × 10
55
, u
62
+ 5u
61
+ ··· 7u + 1i
I
u
2
= hu
2
+ b + u, a, u
3
+ u
2
1i
I
u
3
= hb
2
+ 3u
2
+ b + 5u + 4, a, u
3
+ u
2
1i
I
u
4
= hb, a + 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−7.40×10
54
u
61
7.96×10
55
u
60
+· · ·+9.37×10
54
b+4.22×10
55
, 4.20×
10
54
u
61
2.35×10
55
u
60
+· · ·+4.68×10
54
a+1.32×10
55
, u
62
+5u
61
+· · ·7u+1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
10
=
0.897429u
61
+ 5.01625u
60
+ ··· 31.2394u 2.81463
0.789976u
61
+ 8.49647u
60
+ ··· + 33.8636u 4.50435
a
6
=
0.284554u
61
+ 1.83768u
60
+ ··· 2.18948u + 3.46404
0.353321u
61
0.129700u
60
+ ··· 1.33250u 0.387951
a
1
=
u
2
+ 1
u
4
a
11
=
0.873580u
61
+ 3.94211u
60
+ ··· 25.2656u 4.12853
1.29842u
61
+ 10.9238u
60
+ ··· + 41.7471u 5.56745
a
4
=
u
u
a
7
=
0.834045u
61
+ 3.97405u
60
+ ··· 11.3813u + 4.68603
0.196170u
61
+ 2.00667u
60
+ ··· 10.5243u + 0.834045
a
9
=
0.897429u
61
+ 5.01625u
60
+ ··· 31.2394u 2.81463
0.271747u
61
+ 6.65168u
60
+ ··· + 36.6699u 5.03346
a
12
=
0.835301u
61
3.12639u
60
+ ··· + 14.5834u + 4.37470
5.11158u
61
24.5806u
60
+ ··· 4.66960u + 0.596938
a
8
=
u
2
1
2.88576u
61
+ 15.7183u
60
+ ··· + 14.2886u 2.18510
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.52357u
61
+ 48.3926u
60
+ ··· + 104.147u 23.8150
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
62
+ 35u
61
+ ··· + 141u + 1
c
2
, c
4
u
62
5u
61
+ ··· + 7u + 1
c
3
, c
6
u
62
4u
61
+ ··· + 10u 2
c
5
, c
9
u
62
+ 4u
61
+ ··· + 512u + 512
c
7
u
62
3u
61
+ ··· + 26312u 2116
c
8
, c
11
u
62
+ 5u
61
+ ··· + 11u 1
c
10
, c
12
u
62
+ 23u
61
+ ··· + 261u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
62
11y
61
+ ··· 18829y + 1
c
2
, c
4
y
62
35y
61
+ ··· 141y + 1
c
3
, c
6
y
62
+ 18y
61
+ ··· 459y
2
+ 4
c
5
, c
9
y
62
+ 48y
61
+ ··· + 1703936y + 262144
c
7
y
62
47y
61
+ ··· 1209188200y + 4477456
c
8
, c
11
y
62
23y
61
+ ··· 261y + 1
c
10
, c
12
y
62
+ 37y
61
+ ··· 59949y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.174819 + 1.015820I
a = 1.39308 + 0.32509I
b = 0.169145 + 0.123365I
0.70247 10.05410I 8.00000 + 0.I
u = 0.174819 1.015820I
a = 1.39308 0.32509I
b = 0.169145 0.123365I
0.70247 + 10.05410I 8.00000 + 0.I
u = 0.180060 + 0.947177I
a = 1.40332 0.28966I
b = 0.218716 0.044373I
0.58990 4.34695I 4.42907 + 2.23582I
u = 0.180060 0.947177I
a = 1.40332 + 0.28966I
b = 0.218716 + 0.044373I
0.58990 + 4.34695I 4.42907 2.23582I
u = 0.008820 + 0.960888I
a = 1.46292 + 0.33775I
b = 0.0127547 0.0398138I
5.70261 3.52968I 11.39023 + 3.16583I
u = 0.008820 0.960888I
a = 1.46292 0.33775I
b = 0.0127547 + 0.0398138I
5.70261 + 3.52968I 11.39023 3.16583I
u = 0.925664 + 0.154080I
a = 1.55623 + 0.95238I
b = 1.16403 + 0.90014I
3.09925 + 0.70693I 5.36300 9.97003I
u = 0.925664 0.154080I
a = 1.55623 0.95238I
b = 1.16403 0.90014I
3.09925 0.70693I 5.36300 + 9.97003I
u = 0.961954 + 0.456687I
a = 0.996485 0.482853I
b = 0.773429 0.351449I
1.77868 + 2.87670I 0
u = 0.961954 0.456687I
a = 0.996485 + 0.482853I
b = 0.773429 + 0.351449I
1.77868 2.87670I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.072360 + 0.027388I
a = 0.302091 + 0.387550I
b = 0.44401 + 2.52455I
2.88487 0.32439I 0
u = 1.072360 0.027388I
a = 0.302091 0.387550I
b = 0.44401 2.52455I
2.88487 + 0.32439I 0
u = 1.026130 + 0.340287I
a = 0.816921 + 0.074019I
b = 0.010122 + 1.005580I
0.058930 + 1.340430I 0
u = 1.026130 0.340287I
a = 0.816921 0.074019I
b = 0.010122 1.005580I
0.058930 1.340430I 0
u = 0.263341 + 0.858285I
a = 1.45496 + 0.37428I
b = 0.129842 0.231061I
2.48962 + 3.11257I 8.69664 2.35415I
u = 0.263341 0.858285I
a = 1.45496 0.37428I
b = 0.129842 + 0.231061I
2.48962 3.11257I 8.69664 + 2.35415I
u = 0.799508 + 0.362955I
a = 0.895892 0.982033I
b = 0.36497 1.79872I
3.99898 + 4.77294I 4.23166 6.20197I
u = 0.799508 0.362955I
a = 0.895892 + 0.982033I
b = 0.36497 + 1.79872I
3.99898 4.77294I 4.23166 + 6.20197I
u = 0.871772 + 0.018873I
a = 0.012598 + 0.371703I
b = 0.29638 + 4.67077I
1.75714 2.86066I 51.0320 + 5.8085I
u = 0.871772 0.018873I
a = 0.012598 0.371703I
b = 0.29638 4.67077I
1.75714 + 2.86066I 51.0320 5.8085I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.896158 + 0.689044I
a = 0.409815 0.214201I
b = 0.330845 0.132174I
2.20517 + 2.65821I 0
u = 0.896158 0.689044I
a = 0.409815 + 0.214201I
b = 0.330845 + 0.132174I
2.20517 2.65821I 0
u = 1.129020 + 0.261697I
a = 0.757928 0.225431I
b = 0.024907 1.263230I
0.33332 3.49089I 0
u = 1.129020 0.261697I
a = 0.757928 + 0.225431I
b = 0.024907 + 1.263230I
0.33332 + 3.49089I 0
u = 1.097400 + 0.397924I
a = 1.239460 + 0.321056I
b = 0.994156 + 0.243940I
0.08735 + 7.90185I 0
u = 1.097400 0.397924I
a = 1.239460 0.321056I
b = 0.994156 0.243940I
0.08735 7.90185I 0
u = 0.819617
a = 0.307172
b = 0.434770
1.19404 8.40790
u = 0.847597 + 0.872677I
a = 0.347460 0.563753I
b = 0.206725 0.482515I
5.15087 + 0.64514I 0
u = 0.847597 0.872677I
a = 0.347460 + 0.563753I
b = 0.206725 + 0.482515I
5.15087 0.64514I 0
u = 0.680841 + 0.367855I
a = 1.112590 + 0.853351I
b = 0.40199 + 1.42776I
4.31390 1.39878I 2.91240 + 0.35592I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.680841 0.367855I
a = 1.112590 0.853351I
b = 0.40199 1.42776I
4.31390 + 1.39878I 2.91240 0.35592I
u = 0.915257 + 0.866442I
a = 0.468319 + 0.452475I
b = 0.323390 + 0.408101I
4.96004 + 5.72433I 0
u = 0.915257 0.866442I
a = 0.468319 0.452475I
b = 0.323390 0.408101I
4.96004 5.72433I 0
u = 1.208710 + 0.423576I
a = 0.149684 1.293320I
b = 0.07945 2.58390I
4.51527 + 5.72958I 0
u = 1.208710 0.423576I
a = 0.149684 + 1.293320I
b = 0.07945 + 2.58390I
4.51527 5.72958I 0
u = 1.240470 + 0.336251I
a = 0.16206 + 1.41432I
b = 0.04078 + 2.56231I
7.10231 + 0.65623I 0
u = 1.240470 0.336251I
a = 0.16206 1.41432I
b = 0.04078 2.56231I
7.10231 0.65623I 0
u = 1.176840 + 0.522272I
a = 0.189318 + 1.049630I
b = 0.70577 + 2.17746I
3.81660 2.96163I 0
u = 1.176840 0.522272I
a = 0.189318 1.049630I
b = 0.70577 2.17746I
3.81660 + 2.96163I 0
u = 0.067472 + 0.687187I
a = 1.57662 0.37750I
b = 0.048649 + 0.283986I
0.89271 1.62585I 5.09936 + 3.39490I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.067472 0.687187I
a = 1.57662 + 0.37750I
b = 0.048649 0.283986I
0.89271 + 1.62585I 5.09936 3.39490I
u = 1.289650 + 0.343544I
a = 0.359603 + 0.917247I
b = 0.58072 + 2.17986I
4.20310 + 0.00438I 0
u = 1.289650 0.343544I
a = 0.359603 0.917247I
b = 0.58072 2.17986I
4.20310 0.00438I 0
u = 1.204210 + 0.581904I
a = 0.199785 1.111010I
b = 0.70126 2.14987I
5.30672 8.46798I 0
u = 1.204210 0.581904I
a = 0.199785 + 1.111010I
b = 0.70126 + 2.14987I
5.30672 + 8.46798I 0
u = 1.247410 + 0.558996I
a = 0.008282 1.191920I
b = 0.03995 2.65434I
2.68389 + 9.79746I 0
u = 1.247410 0.558996I
a = 0.008282 + 1.191920I
b = 0.03995 + 2.65434I
2.68389 9.79746I 0
u = 0.433777 + 0.453147I
a = 1.191930 0.656817I
b = 0.050682 + 0.450591I
1.02754 1.38144I 8.05413 + 4.71760I
u = 0.433777 0.453147I
a = 1.191930 + 0.656817I
b = 0.050682 0.450591I
1.02754 + 1.38144I 8.05413 4.71760I
u = 1.293820 + 0.477820I
a = 0.023615 + 1.302060I
b = 0.04451 + 2.61060I
9.73955 + 8.61640I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.293820 0.477820I
a = 0.023615 1.302060I
b = 0.04451 2.61060I
9.73955 8.61640I 0
u = 0.315761 + 0.523302I
a = 0.18061 1.62642I
b = 0.419756 0.854977I
3.48000 + 1.09960I 1.12389 2.21841I
u = 0.315761 0.523302I
a = 0.18061 + 1.62642I
b = 0.419756 + 0.854977I
3.48000 1.09960I 1.12389 + 2.21841I
u = 1.303730 + 0.481258I
a = 0.318337 1.050310I
b = 0.65397 2.15550I
9.72761 1.62399I 0
u = 1.303730 0.481258I
a = 0.318337 + 1.050310I
b = 0.65397 + 2.15550I
9.72761 + 1.62399I 0
u = 1.274470 + 0.579615I
a = 0.050317 + 1.202790I
b = 0.01989 + 2.64791I
4.1048 + 15.7750I 0
u = 1.274470 0.579615I
a = 0.050317 1.202790I
b = 0.01989 2.64791I
4.1048 15.7750I 0
u = 1.369400 + 0.350028I
a = 0.430304 0.959677I
b = 0.58989 2.12605I
5.80592 + 5.27823I 0
u = 1.369400 0.350028I
a = 0.430304 + 0.959677I
b = 0.58989 + 2.12605I
5.80592 5.27823I 0
u = 0.109124 + 0.515994I
a = 0.17301 + 1.83308I
b = 0.531901 + 0.923027I
2.76743 4.27360I 2.53028 + 4.40261I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.109124 0.515994I
a = 0.17301 1.83308I
b = 0.531901 0.923027I
2.76743 + 4.27360I 2.53028 4.40261I
u = 0.0853866
a = 6.04151
b = 0.733691
1.41710 6.18580
11
II. I
u
2
= hu
2
+ b + u, a, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
10
=
0
u
2
u
a
6
=
0
u
a
1
=
u
2
+ 1
u
2
u + 1
a
11
=
u + 1
2u
a
4
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
9
=
0
u
2
u
a
12
=
u
2
u
2
u 1
a
8
=
u
2
1
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
11u 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
10
u
3
u
2
+ 2u 1
c
2
, c
8
u
3
+ u
2
1
c
4
, c
11
u
3
u
2
+ 1
c
5
, c
9
u
3
c
6
, c
12
u
3
+ u
2
+ 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
8
c
11
y
3
y
2
+ 2y 1
c
5
, c
9
y
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.662359 + 0.562280I
6.04826 + 5.65624I 0.77833 5.57920I
u = 0.877439 0.744862I
a = 0
b = 0.662359 0.562280I
6.04826 5.65624I 0.77833 + 5.57920I
u = 0.754878
a = 0
b = 1.32472
2.22691 19.4430
15
III. I
u
3
= hb
2
+ 3u
2
+ b + 5u + 4, a, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
10
=
0
b
a
6
=
0
u
a
1
=
u
2
+ 1
u
2
u + 1
a
11
=
u
2
b bu
2u
2
b
a
4
=
u
u
a
7
=
u
2
1
u
2
+ u 1
a
9
=
0
b
a
12
=
u
2
b 2bu u
2
+ 2b u + 1
2bu + u
2
+ 2b + u + 3
a
8
=
u
2
1
u
2
b + 2u
2
+ b + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
b + 12bu + 9u
2
10b + 14u 9
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
10
(u
3
u
2
+ 2u 1)
2
c
2
, c
8
(u
3
+ u
2
1)
2
c
4
, c
11
(u
3
u
2
+ 1)
2
c
5
, c
9
u
6
c
6
, c
12
(u
3
+ u
2
+ 2u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
8
c
11
(y
3
y
2
+ 2y 1)
2
c
5
, c
9
y
6
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.807599 0.320410I
6.04826 1.68265 + 0.98317I
u = 0.877439 + 0.744862I
a = 0
b = 0.192401 + 0.320410I
1.91067 + 2.82812I 17.1302 8.6725I
u = 0.877439 0.744862I
a = 0
b = 0.807599 + 0.320410I
6.04826 1.68265 0.98317I
u = 0.877439 0.744862I
a = 0
b = 0.192401 0.320410I
1.91067 2.82812I 17.1302 + 8.6725I
u = 0.754878
a = 0
b = 0.50000 + 3.03873I
1.91067 + 2.82812I 6.31282 + 2.33391I
u = 0.754878
a = 0
b = 0.50000 3.03873I
1.91067 2.82812I 6.31282 2.33391I
19
IV. I
u
4
= hb, a + 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
1
a
3
=
1
1
a
10
=
1
0
a
6
=
1
1
a
1
=
0
1
a
11
=
1
1
a
4
=
1
1
a
7
=
1
1
a
9
=
1
1
a
12
=
1
2
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
, c
10
u 1
c
3
, c
6
u
c
4
, c
9
, c
11
c
12
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y 1
c
3
, c
6
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
u
2
+ 2u 1)
3
(u
62
+ 35u
61
+ ··· + 141u + 1)
c
2
(u 1)(u
3
+ u
2
1)
3
(u
62
5u
61
+ ··· + 7u + 1)
c
3
u(u
3
u
2
+ 2u 1)
3
(u
62
4u
61
+ ··· + 10u 2)
c
4
(u + 1)(u
3
u
2
+ 1)
3
(u
62
5u
61
+ ··· + 7u + 1)
c
5
u
9
(u 1)(u
62
+ 4u
61
+ ··· + 512u + 512)
c
6
u(u
3
+ u
2
+ 2u + 1)
3
(u
62
4u
61
+ ··· + 10u 2)
c
7
(u 1)(u
3
u
2
+ 2u 1)
3
(u
62
3u
61
+ ··· + 26312u 2116)
c
8
(u 1)(u
3
+ u
2
1)
3
(u
62
+ 5u
61
+ ··· + 11u 1)
c
9
u
9
(u + 1)(u
62
+ 4u
61
+ ··· + 512u + 512)
c
10
(u 1)(u
3
u
2
+ 2u 1)
3
(u
62
+ 23u
61
+ ··· + 261u + 1)
c
11
(u + 1)(u
3
u
2
+ 1)
3
(u
62
+ 5u
61
+ ··· + 11u 1)
c
12
(u + 1)(u
3
+ u
2
+ 2u + 1)
3
(u
62
+ 23u
61
+ ··· + 261u + 1)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
62
11y
61
+ ··· 18829y + 1)
c
2
, c
4
(y 1)(y
3
y
2
+ 2y 1)
3
(y
62
35y
61
+ ··· 141y + 1)
c
3
, c
6
y(y
3
+ 3y
2
+ 2y 1)
3
(y
62
+ 18y
61
+ ··· 459y
2
+ 4)
c
5
, c
9
y
9
(y 1)(y
62
+ 48y
61
+ ··· + 1703936y + 262144)
c
7
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
· (y
62
47y
61
+ ··· 1209188200y + 4477456)
c
8
, c
11
(y 1)(y
3
y
2
+ 2y 1)
3
(y
62
23y
61
+ ··· 261y + 1)
c
10
, c
12
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
62
+ 37y
61
+ ··· 59949y + 1)
25