12n
0084
(K12n
0084
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 8 4 11 6 7 12 8 10
Solving Sequence
7,11
8
4,12
3 6 5 2 10 1 9
c
7
c
11
c
3
c
6
c
5
c
2
c
10
c
12
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−16510225313889u
40
73379619742180u
39
+ ··· + 7015565688188b + 16563398292357,
39282009802613u
40
170243595424532u
39
+ ··· + 7015565688188a + 73325296186875,
u
41
+ 5u
40
+ ··· + 5u 1i
I
u
2
= h−u
2
a 2u
2
+ b + a + u + 2, a
2
+ 2au + 4u
2
+ a 4u + 4, u
3
u
2
+ 1i
I
u
3
= hu
2
+ b, a u, u
3
u
2
+ 1i
I
u
4
= hb, a + 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.65×10
13
u
40
7.34×10
13
u
39
+· · ·+7.02×10
12
b+1.66×10
13
, 3.93×
10
13
u
40
1.70×10
14
u
39
+· · ·+7.02×10
12
a+7.33×10
13
, u
41
+5u
40
+· · ·+5u1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
5.59926u
40
+ 24.2666u
39
+ ··· + 36.6437u 10.4518
2.35337u
40
+ 10.4595u
39
+ ··· + 18.2641u 2.36095
a
12
=
u
u
3
+ u
a
3
=
7.95264u
40
+ 34.7261u
39
+ ··· + 54.9078u 12.8128
2.35337u
40
+ 10.4595u
39
+ ··· + 18.2641u 2.36095
a
6
=
0.679973u
40
2.74952u
39
+ ··· 2.24406u + 4.15673
0.448072u
40
+ 2.09737u
39
+ ··· 2.27213u 0.275451
a
5
=
0.0387129u
40
1.20772u
39
+ ··· 8.44788u + 4.53163
1.39663u
40
6.29046u
39
+ ··· 11.2359u + 1.38905
a
2
=
5.78006u
40
+ 24.1415u
39
+ ··· + 36.8035u 7.87601
1.39663u
40
+ 6.29046u
39
+ ··· + 11.2359u 1.38905
a
10
=
u
3
u
5
u
3
+ u
a
1
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
9
=
u
5
u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
93247797228429
1753891422047
u
40
+
1555830189736099
7015565688188
u
39
+ ··· +
2808560039807687
7015565688188
u
263248389242609
3507782844094
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 29u
40
+ ··· + 71u + 1
c
2
, c
4
u
41
5u
40
+ ··· + 7u 1
c
3
, c
6
u
41
4u
40
+ ··· 10u + 2
c
5
, c
8
u
41
4u
40
+ ··· + 512u 512
c
7
, c
11
u
41
5u
40
+ ··· + 5u + 1
c
9
u
41
+ 3u
40
+ ··· 19597u + 2017
c
10
, c
12
u
41
9u
40
+ ··· + 95u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
29y
40
+ ··· + 1223y 1
c
2
, c
4
y
41
29y
40
+ ··· + 71y 1
c
3
, c
6
y
41
+ 42y
39
+ ··· + 56y 4
c
5
, c
8
y
41
50y
40
+ ··· + 6160384y 262144
c
7
, c
11
y
41
9y
40
+ ··· + 95y 1
c
9
y
41
+ 135y
40
+ ··· + 36517343y 4068289
c
10
, c
12
y
41
+ 51y
40
+ ··· + 6127y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.716889 + 0.703853I
a = 0.43425 2.19682I
b = 0.336317 + 0.798192I
4.60661 + 1.52902I 5.50706 4.66307I
u = 0.716889 0.703853I
a = 0.43425 + 2.19682I
b = 0.336317 0.798192I
4.60661 1.52902I 5.50706 + 4.66307I
u = 0.870049 + 0.467634I
a = 1.164530 + 0.454430I
b = 0.135790 0.918035I
1.79473 + 0.06262I 2.65743 0.68980I
u = 0.870049 0.467634I
a = 1.164530 0.454430I
b = 0.135790 + 0.918035I
1.79473 0.06262I 2.65743 + 0.68980I
u = 0.356456 + 0.980218I
a = 0.282408 + 0.117731I
b = 1.039320 0.421414I
7.17972 2.87745I 9.28722 + 2.69256I
u = 0.356456 0.980218I
a = 0.282408 0.117731I
b = 1.039320 + 0.421414I
7.17972 + 2.87745I 9.28722 2.69256I
u = 0.670401 + 0.652476I
a = 1.010200 0.553099I
b = 0.446012 + 1.120950I
0.97725 4.44119I 1.27945 + 4.71656I
u = 0.670401 0.652476I
a = 1.010200 + 0.553099I
b = 0.446012 1.120950I
0.97725 + 4.44119I 1.27945 4.71656I
u = 0.940640 + 0.501809I
a = 0.02791 + 1.96139I
b = 0.687266 0.758448I
0.70118 + 4.43572I 0.34738 6.39371I
u = 0.940640 0.501809I
a = 0.02791 1.96139I
b = 0.687266 + 0.758448I
0.70118 4.43572I 0.34738 + 6.39371I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.877966 + 0.643589I
a = 0.016521 + 1.234530I
b = 0.609480 0.518945I
4.07708 + 3.51500I 8.28852 2.95507I
u = 0.877966 0.643589I
a = 0.016521 1.234530I
b = 0.609480 + 0.518945I
4.07708 3.51500I 8.28852 + 2.95507I
u = 0.854623 + 0.159200I
a = 0.978695 + 0.858024I
b = 0.041696 0.419660I
1.46993 0.34552I 6.06026 + 0.56755I
u = 0.854623 0.159200I
a = 0.978695 0.858024I
b = 0.041696 + 0.419660I
1.46993 + 0.34552I 6.06026 0.56755I
u = 0.877954 + 0.775956I
a = 0.968702 0.351197I
b = 0.598603 + 0.031599I
3.83803 + 2.91878I 4.79738 5.00057I
u = 0.877954 0.775956I
a = 0.968702 + 0.351197I
b = 0.598603 0.031599I
3.83803 2.91878I 4.79738 + 5.00057I
u = 0.537453 + 0.625371I
a = 0.426437 0.272772I
b = 0.891755 + 0.389086I
2.04074 0.11127I 4.60725 + 0.35706I
u = 0.537453 0.625371I
a = 0.426437 + 0.272772I
b = 0.891755 0.389086I
2.04074 + 0.11127I 4.60725 0.35706I
u = 0.802702
a = 5.09181
b = 0.275758
0.345711 64.7260
u = 1.139710 + 0.532282I
a = 0.29262 1.64354I
b = 0.893901 + 0.701047I
4.48025 + 8.31246I 0. 7.85034I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.139710 0.532282I
a = 0.29262 + 1.64354I
b = 0.893901 0.701047I
4.48025 8.31246I 0. + 7.85034I
u = 1.26772
a = 0.964605
b = 0.640215
0.787444 12.1570
u = 0.891473 + 0.933329I
a = 0.528554 + 0.154006I
b = 1.25025 1.10628I
10.38260 + 1.04574I 0
u = 0.891473 0.933329I
a = 0.528554 0.154006I
b = 1.25025 + 1.10628I
10.38260 1.04574I 0
u = 0.841724 + 0.990823I
a = 0.377207 0.291737I
b = 1.21490 + 1.06493I
15.1663 + 7.0683I 0
u = 0.841724 0.990823I
a = 0.377207 + 0.291737I
b = 1.21490 1.06493I
15.1663 7.0683I 0
u = 0.934438 + 0.935551I
a = 0.61279 + 1.51752I
b = 1.12955 1.22573I
14.6673 1.5212I 0
u = 0.934438 0.935551I
a = 0.61279 1.51752I
b = 1.12955 + 1.22573I
14.6673 + 1.5212I 0
u = 0.982434 + 0.885456I
a = 0.67122 1.65206I
b = 1.17691 + 1.18848I
10.08510 7.74293I 0
u = 0.982434 0.885456I
a = 0.67122 + 1.65206I
b = 1.17691 1.18848I
10.08510 + 7.74293I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.962450 + 0.919824I
a = 0.713562 0.200841I
b = 1.20978 + 1.14699I
14.5747 5.2989I 0
u = 0.962450 0.919824I
a = 0.713562 + 0.200841I
b = 1.20978 1.14699I
14.5747 + 5.2989I 0
u = 0.961309 + 0.961016I
a = 0.125970 + 0.554955I
b = 1.019520 0.111695I
9.11622 + 3.51279I 0
u = 0.961309 0.961016I
a = 0.125970 0.554955I
b = 1.019520 + 0.111695I
9.11622 3.51279I 0
u = 1.039620 + 0.876652I
a = 0.63077 + 1.75489I
b = 1.15233 1.13531I
14.5120 13.9039I 0
u = 1.039620 0.876652I
a = 0.63077 1.75489I
b = 1.15233 + 1.13531I
14.5120 + 13.9039I 0
u = 0.629652 + 0.060391I
a = 0.09621 + 3.42389I
b = 0.189078 1.367880I
3.87413 + 2.95359I 12.9329 8.6631I
u = 0.629652 0.060391I
a = 0.09621 3.42389I
b = 0.189078 + 1.367880I
3.87413 2.95359I 12.9329 + 8.6631I
u = 0.512134 + 0.182325I
a = 2.61667 + 0.05062I
b = 0.497781 0.337919I
1.008150 0.694652I 6.89267 0.99274I
u = 0.512134 0.182325I
a = 2.61667 0.05062I
b = 0.497781 + 0.337919I
1.008150 + 0.694652I 6.89267 + 0.99274I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.113052
a = 3.84398
b = 0.612202
1.00335 10.2280
9
II.
I
u
2
= h−u
2
a 2u
2
+ b + a + u + 2, a
2
+ 2au + 4u
2
+ a 4u + 4, u
3
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
a
u
2
a + 2u
2
a u 2
a
12
=
u
u
2
+ u + 1
a
3
=
u
2
a + 2u
2
u 2
u
2
a + 2u
2
a u 2
a
6
=
u
2
a au a 3
u
2
a + au + 3u
2
a
5
=
u
2
a au a 3
u
2
a + au + 3u
2
a
2
=
2u
2
a + 3u
2
a 5
u
2
a + au + 3u
2
a
10
=
u
2
+ 1
u
2
a
1
=
1
0
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a + 15au + 20u
2
+ 11a + 4u + 4
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
9
c
12
(u
3
u
2
+ 2u 1)
2
c
2
, c
11
(u
3
+ u
2
1)
2
c
4
, c
7
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
, c
10
(u
3
+ u
2
+ 2u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
7
c
11
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.06984 1.06527I
b = 0.215080 + 1.307140I
5.65624I 3.29784 6.94206I
u = 0.877439 + 0.744862I
a = 1.68504 0.42445I
b = 0.569840
4.13758 + 2.82812I 24.3518 + 2.3339I
u = 0.877439 0.744862I
a = 1.06984 + 1.06527I
b = 0.215080 1.307140I
5.65624I 3.29784 + 6.94206I
u = 0.877439 0.744862I
a = 1.68504 + 0.42445I
b = 0.569840
4.13758 2.82812I 24.3518 2.3339I
u = 0.754878
a = 0.25488 + 3.03873I
b = 0.215080 1.307140I
4.13758 2.82812I 12.14969 2.71361I
u = 0.754878
a = 0.25488 3.03873I
b = 0.215080 + 1.307140I
4.13758 + 2.82812I 12.14969 + 2.71361I
13
III. I
u
3
= hu
2
+ b, a u, u
3
u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
u
u
2
a
12
=
u
u
2
+ u + 1
a
3
=
u
2
+ u
u
2
a
6
=
u
2
u
2
+ u + 1
a
5
=
u
2
u
2
+ u + 1
a
2
=
u 1
u
2
+ u + 1
a
10
=
u
2
+ 1
u
2
a
1
=
1
0
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
3u 2
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
9
c
12
u
3
u
2
+ 2u 1
c
2
, c
11
u
3
+ u
2
1
c
4
, c
7
u
3
u
2
+ 1
c
5
, c
8
u
3
c
6
, c
10
u
3
+ u
2
+ 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
7
c
11
y
3
y
2
+ 2y 1
c
5
, c
8
y
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 + 0.744862I
b = 0.215080 1.307140I
0 4.20216 + 0.37970I
u = 0.877439 0.744862I
a = 0.877439 0.744862I
b = 0.215080 + 1.307140I
0 4.20216 0.37970I
u = 0.754878
a = 0.754878
b = 0.569840
0 1.40430
17
IV. I
u
4
= hb, a + 1, u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
1
a
8
=
1
1
a
4
=
1
0
a
12
=
1
0
a
3
=
1
0
a
6
=
1
0
a
5
=
2
1
a
2
=
3
1
a
10
=
1
1
a
1
=
2
1
a
9
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
c
9
, c
11
, c
12
u 1
c
3
, c
6
u
c
4
, c
5
, c
7
c
10
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y 1
c
3
, c
6
y
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
0 0
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
u
2
+ 2u 1)
3
(u
41
+ 29u
40
+ ··· + 71u + 1)
c
2
(u 1)(u
3
+ u
2
1)
3
(u
41
5u
40
+ ··· + 7u 1)
c
3
u(u
3
u
2
+ 2u 1)
3
(u
41
4u
40
+ ··· 10u + 2)
c
4
(u + 1)(u
3
u
2
+ 1)
3
(u
41
5u
40
+ ··· + 7u 1)
c
5
u
9
(u + 1)(u
41
4u
40
+ ··· + 512u 512)
c
6
u(u
3
+ u
2
+ 2u + 1)
3
(u
41
4u
40
+ ··· 10u + 2)
c
7
(u + 1)(u
3
u
2
+ 1)
3
(u
41
5u
40
+ ··· + 5u + 1)
c
8
u
9
(u 1)(u
41
4u
40
+ ··· + 512u 512)
c
9
(u 1)(u
3
u
2
+ 2u 1)
3
(u
41
+ 3u
40
+ ··· 19597u + 2017)
c
10
(u + 1)(u
3
+ u
2
+ 2u + 1)
3
(u
41
9u
40
+ ··· + 95u 1)
c
11
(u 1)(u
3
+ u
2
1)
3
(u
41
5u
40
+ ··· + 5u + 1)
c
12
(u 1)(u
3
u
2
+ 2u 1)
3
(u
41
9u
40
+ ··· + 95u 1)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
41
29y
40
+ ··· + 1223y 1)
c
2
, c
4
(y 1)(y
3
y
2
+ 2y 1)
3
(y
41
29y
40
+ ··· + 71y 1)
c
3
, c
6
y(y
3
+ 3y
2
+ 2y 1)
3
(y
41
+ 42y
39
+ ··· + 56y 4)
c
5
, c
8
y
9
(y 1)(y
41
50y
40
+ ··· + 6160384y 262144)
c
7
, c
11
(y 1)(y
3
y
2
+ 2y 1)
3
(y
41
9y
40
+ ··· + 95y 1)
c
9
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
· (y
41
+ 135y
40
+ ··· + 36517343y 4068289)
c
10
, c
12
(y 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
41
+ 51y
40
+ ··· + 6127y 1)
23