12n
0086
(K12n
0086
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 9 3 11 6 12 8 1 10
Solving Sequence
3,6 7,11
8 9 5 2 1 4 10 12
c
6
c
7
c
8
c
5
c
2
c
1
c
4
c
10
c
12
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.19780 × 10
241
u
65
+ 8.81073 × 10
241
u
64
+ ··· + 3.02569 × 10
240
b + 9.53394 × 10
243
,
8.96655 × 10
240
u
65
+ 6.61765 × 10
241
u
64
+ ··· + 3.02569 × 10
240
a + 6.94724 × 10
243
,
u
66
+ 8u
65
+ ··· 7168u + 512i
I
u
2
= hu
5
2u
3
u
2
+ b + 2u + 1, u
5
+ 2u
4
u
3
3u
2
+ a + 2, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
v
1
= ha, 1742v
8
24207v
7
17107v
6
+ 21829v
5
+ 12682v
4
26226v
3
24997v
2
+ 683b 5624v + 648,
v
9
13v
8
22v
7
+ 15v
5
5v
4
25v
3
20v
2
7v 1i
* 3 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.20 × 10
241
u
65
+ 8.81 × 10
241
u
64
+ · · · + 3.03 × 10
240
b + 9.53 ×
10
243
, 8.97 × 10
240
u
65
+ 6.62 × 10
241
u
64
+ · · · + 3.03 × 10
240
a + 6.95 ×
10
243
, u
66
+ 8u
65
+ · · · 7168u + 512i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
2.96348u
65
21.8716u
64
+ ··· + 37209.0u 2296.09
3.95876u
65
29.1198u
64
+ ··· + 48993.3u 3151.00
a
8
=
0.189192u
65
1.42917u
64
+ ··· + 3725.71u 278.930
3.64017u
65
26.9641u
64
+ ··· + 48969.5u 3124.72
a
9
=
3.82936u
65
28.3933u
64
+ ··· + 52695.2u 3403.65
3.64017u
65
26.9641u
64
+ ··· + 48969.5u 3124.72
a
5
=
0.597599u
65
4.38854u
64
+ ··· + 7145.50u 452.205
1.29177u
65
9.48251u
64
+ ··· + 15607.1u 1005.22
a
2
=
0.694167u
65
5.09397u
64
+ ··· + 8461.64u 553.013
1.29177u
65
9.48251u
64
+ ··· + 15607.1u 1005.22
a
1
=
0.694167u
65
5.09397u
64
+ ··· + 8461.64u 553.013
0.988463u
65
7.25680u
64
+ ··· + 11959.0u 770.026
a
4
=
u
u
a
10
=
3.85958u
65
28.4537u
64
+ ··· + 47856.5u 2957.77
7.03239u
65
51.8312u
64
+ ··· + 89324.7u 5730.22
a
12
=
4.70834u
65
34.8004u
64
+ ··· + 60886.6u 3811.37
7.53902u
65
55.6488u
64
+ ··· + 97468.3u 6242.36
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12.0986u
65
+ 88.8600u
64
+ ··· 142679.u + 8879.59
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
66
+ 21u
65
+ ··· + 31524u + 1
c
2
, c
4
u
66
11u
65
+ ··· + 184u 1
c
3
, c
6
u
66
+ 8u
65
+ ··· 7168u + 512
c
5
, c
8
u
66
+ 3u
65
+ ··· 2u 1
c
7
, c
10
u
66
2u
65
+ ··· + 192u + 64
c
9
, c
12
u
66
8u
65
+ ··· 11u + 1
c
11
u
66
+ 28u
65
+ ··· 143u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
66
+ 59y
65
+ ··· 992297680y + 1
c
2
, c
4
y
66
21y
65
+ ··· 31524y + 1
c
3
, c
6
y
66
60y
65
+ ··· 76021760y + 262144
c
5
, c
8
y
66
+ 15y
65
+ ··· 20y + 1
c
7
, c
10
y
66
+ 42y
65
+ ··· + 77824y + 4096
c
9
, c
12
y
66
28y
65
+ ··· + 143y + 1
c
11
y
66
+ 28y
65
+ ··· 12229y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.896621 + 0.222919I
a = 0.68390 + 2.68834I
b = 0.03058 1.93558I
4.31795 + 0.78820I 0
u = 0.896621 0.222919I
a = 0.68390 2.68834I
b = 0.03058 + 1.93558I
4.31795 0.78820I 0
u = 0.161444 + 0.873142I
a = 0.24159 2.29188I
b = 0.96672 2.19128I
3.21013 + 1.26950I 0
u = 0.161444 0.873142I
a = 0.24159 + 2.29188I
b = 0.96672 + 2.19128I
3.21013 1.26950I 0
u = 0.734614 + 0.498569I
a = 0.296201 + 0.045995I
b = 0.216817 + 0.815085I
1.31523 + 1.27199I 0
u = 0.734614 0.498569I
a = 0.296201 0.045995I
b = 0.216817 0.815085I
1.31523 1.27199I 0
u = 0.015880 + 1.156380I
a = 1.200970 + 0.600425I
b = 0.773578 + 1.087150I
2.23471 + 2.98196I 0
u = 0.015880 1.156380I
a = 1.200970 0.600425I
b = 0.773578 1.087150I
2.23471 2.98196I 0
u = 0.043693 + 0.829853I
a = 1.154180 + 0.810143I
b = 0.493220 0.823559I
2.07274 4.10478I 0
u = 0.043693 0.829853I
a = 1.154180 0.810143I
b = 0.493220 + 0.823559I
2.07274 + 4.10478I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.010290 + 0.635704I
a = 0.0712092 0.0097906I
b = 0.045899 0.458605I
1.20228 5.48361I 0
u = 1.010290 0.635704I
a = 0.0712092 + 0.0097906I
b = 0.045899 + 0.458605I
1.20228 + 5.48361I 0
u = 0.178380 + 0.763029I
a = 1.123200 0.224763I
b = 0.584767 + 0.854259I
2.74552 + 1.51786I 0
u = 0.178380 0.763029I
a = 1.123200 + 0.224763I
b = 0.584767 0.854259I
2.74552 1.51786I 0
u = 0.710476 + 0.000507I
a = 0.047677 + 0.256353I
b = 0.191197 0.906715I
1.17931 1.63015I 0. + 3.30141I
u = 0.710476 0.000507I
a = 0.047677 0.256353I
b = 0.191197 + 0.906715I
1.17931 + 1.63015I 0. 3.30141I
u = 0.438003 + 0.525280I
a = 1.44839 0.54246I
b = 0.083240 0.461268I
1.91057 + 0.79816I 4.00000 + 0.I
u = 0.438003 0.525280I
a = 1.44839 + 0.54246I
b = 0.083240 + 0.461268I
1.91057 0.79816I 4.00000 + 0.I
u = 0.681040 + 0.017244I
a = 0.147299 0.561967I
b = 0.847666 0.591726I
1.43375 2.91518I 0. + 4.85019I
u = 0.681040 0.017244I
a = 0.147299 + 0.561967I
b = 0.847666 + 0.591726I
1.43375 + 2.91518I 0. 4.85019I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.006104 + 0.635645I
a = 1.91287 1.80281I
b = 0.052848 0.610826I
1.82059 0.01526I 7.87182 + 0.48568I
u = 0.006104 0.635645I
a = 1.91287 + 1.80281I
b = 0.052848 + 0.610826I
1.82059 + 0.01526I 7.87182 0.48568I
u = 0.619648 + 0.008490I
a = 0.511507 0.814092I
b = 1.051820 0.516985I
5.23148 1.44469I 2.19147 + 1.36304I
u = 0.619648 0.008490I
a = 0.511507 + 0.814092I
b = 1.051820 + 0.516985I
5.23148 + 1.44469I 2.19147 1.36304I
u = 0.598433 + 0.144408I
a = 0.338653 + 0.326080I
b = 0.823727 + 0.764068I
4.86194 7.45999I 0.96246 + 11.41011I
u = 0.598433 0.144408I
a = 0.338653 0.326080I
b = 0.823727 0.764068I
4.86194 + 7.45999I 0.96246 11.41011I
u = 0.557706 + 0.143081I
a = 2.02290 + 5.39960I
b = 0.061106 0.673706I
0.81136 + 2.64313I 13.7570 9.2546I
u = 0.557706 0.143081I
a = 2.02290 5.39960I
b = 0.061106 + 0.673706I
0.81136 2.64313I 13.7570 + 9.2546I
u = 1.47897 + 0.04915I
a = 0.36193 1.79756I
b = 1.17938 + 2.79473I
2.17496 + 0.19887I 0
u = 1.47897 0.04915I
a = 0.36193 + 1.79756I
b = 1.17938 2.79473I
2.17496 0.19887I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49869 + 0.12364I
a = 0.028754 + 0.149012I
b = 1.196520 0.662560I
3.57906 + 2.47635I 0
u = 1.49869 0.12364I
a = 0.028754 0.149012I
b = 1.196520 + 0.662560I
3.57906 2.47635I 0
u = 1.51285 + 0.03928I
a = 0.346340 1.327240I
b = 1.21560 + 1.60059I
7.72304 2.79945I 0
u = 1.51285 0.03928I
a = 0.346340 + 1.327240I
b = 1.21560 1.60059I
7.72304 + 2.79945I 0
u = 1.47811 + 0.34080I
a = 0.1005600 0.0917447I
b = 0.972026 + 0.012478I
3.17239 3.89822I 0
u = 1.47811 0.34080I
a = 0.1005600 + 0.0917447I
b = 0.972026 0.012478I
3.17239 + 3.89822I 0
u = 1.46366 + 0.47734I
a = 0.26778 + 1.74931I
b = 1.79456 2.53218I
1.18870 6.56344I 0
u = 1.46366 0.47734I
a = 0.26778 1.74931I
b = 1.79456 + 2.53218I
1.18870 + 6.56344I 0
u = 1.47312 + 0.46657I
a = 0.767438 + 1.139500I
b = 0.63144 1.94704I
6.78475 + 9.23321I 0
u = 1.47312 0.46657I
a = 0.767438 1.139500I
b = 0.63144 + 1.94704I
6.78475 9.23321I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.45244 + 1.51129I
a = 0.073063 + 0.503097I
b = 0.72561 + 2.13556I
2.19847 + 2.32521I 0
u = 0.45244 1.51129I
a = 0.073063 0.503097I
b = 0.72561 2.13556I
2.19847 2.32521I 0
u = 1.60960 + 0.20036I
a = 0.031037 + 0.149711I
b = 1.349420 0.252092I
4.03833 + 2.66127I 0
u = 1.60960 0.20036I
a = 0.031037 0.149711I
b = 1.349420 + 0.252092I
4.03833 2.66127I 0
u = 1.62095 + 0.14520I
a = 0.146836 1.371110I
b = 1.32921 + 1.94937I
9.29382 3.78649I 0
u = 1.62095 0.14520I
a = 0.146836 + 1.371110I
b = 1.32921 1.94937I
9.29382 + 3.78649I 0
u = 1.52811 + 0.57582I
a = 0.0964491 + 0.0666214I
b = 0.958300 0.287281I
2.66554 9.42263I 0
u = 1.52811 0.57582I
a = 0.0964491 0.0666214I
b = 0.958300 + 0.287281I
2.66554 + 9.42263I 0
u = 1.61436 + 0.32070I
a = 0.579677 1.239460I
b = 0.64699 + 2.29322I
8.98485 + 3.05406I 0
u = 1.61436 0.32070I
a = 0.579677 + 1.239460I
b = 0.64699 2.29322I
8.98485 3.05406I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.17931 + 1.15054I
a = 0.565320 + 0.704718I
b = 1.72394 0.50610I
1.42259 0.46359I 0
u = 1.17931 1.15054I
a = 0.565320 0.704718I
b = 1.72394 + 0.50610I
1.42259 + 0.46359I 0
u = 1.56100 + 0.72853I
a = 0.337392 0.874324I
b = 1.67630 + 1.29876I
1.87995 + 4.31692I 0
u = 1.56100 0.72853I
a = 0.337392 + 0.874324I
b = 1.67630 1.29876I
1.87995 4.31692I 0
u = 0.11530 + 1.78369I
a = 0.289375 0.485587I
b = 0.66341 2.67095I
1.02644 + 7.74901I 0
u = 0.11530 1.78369I
a = 0.289375 + 0.485587I
b = 0.66341 + 2.67095I
1.02644 7.74901I 0
u = 1.65910 + 0.67262I
a = 0.481831 1.322710I
b = 1.33635 + 2.65341I
8.24876 10.14770I 0
u = 1.65910 0.67262I
a = 0.481831 + 1.322710I
b = 1.33635 2.65341I
8.24876 + 10.14770I 0
u = 1.60879 + 0.80973I
a = 0.657052 + 1.243910I
b = 1.24884 2.74717I
5.9981 16.5072I 0
u = 1.60879 0.80973I
a = 0.657052 1.243910I
b = 1.24884 + 2.74717I
5.9981 + 16.5072I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.104054
a = 86.7705
b = 0.408951
2.82917 365.350
u = 1.89844 + 0.28442I
a = 0.119565 + 1.273780I
b = 0.64384 3.14134I
9.83371 + 2.67210I 0
u = 1.89844 0.28442I
a = 0.119565 1.273780I
b = 0.64384 + 3.14134I
9.83371 2.67210I 0
u = 0.0750607
a = 9.20491
b = 0.556076
1.20362 8.91660
u = 1.90900 + 0.52880I
a = 0.341894 1.190340I
b = 0.66785 + 3.28864I
8.19227 + 8.99833I 0
u = 1.90900 0.52880I
a = 0.341894 + 1.190340I
b = 0.66785 3.28864I
8.19227 8.99833I 0
11
II. I
u
2
=
hu
5
2u
3
u
2
+b+2u+1, u
5
+2u
4
u
3
3u
2
+a+2, u
6
+u
5
u
4
2u
3
+u+1i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
u
5
2u
4
+ u
3
+ 3u
2
2
u
5
+ 2u
3
+ u
2
2u 1
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
u
2
1
u
4
a
1
=
u
2
1
u
2
a
4
=
u
u
a
10
=
u
5
2u
4
+ u
3
+ 3u
2
2
u
5
+ 2u
3
+ u
2
2u 1
a
12
=
u
5
2u
4
+ u
3
+ 4u
2
3
u
5
+ 2u
3
+ 2u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
u
4
4u
3
3u
2
+ 8u 8
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
, c
6
u
6
+ u
5
u
4
2u
3
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
7
, c
10
u
6
c
9
, c
11
(u 1)
6
c
12
(u + 1)
6
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
3
, c
4
c
6
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
7
, c
10
y
6
c
9
, c
11
, c
12
(y 1)
6
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.344968 0.764807I
b = 0.769407 + 0.497010I
0.245672 + 0.924305I 5.68949 0.25702I
u = 1.002190 0.295542I
a = 0.344968 + 0.764807I
b = 0.769407 0.497010I
0.245672 0.924305I 5.68949 + 0.25702I
u = 0.428243 + 0.664531I
a = 1.68613 1.92635I
b = 0.66103 1.45708I
3.53554 + 0.92430I 12.60470 + 5.55069I
u = 0.428243 0.664531I
a = 1.68613 + 1.92635I
b = 0.66103 + 1.45708I
3.53554 0.92430I 12.60470 5.55069I
u = 1.073950 + 0.558752I
a = 0.158836 + 0.437639I
b = 0.391622 0.558752I
1.64493 5.69302I 11.7058 + 8.3306I
u = 1.073950 0.558752I
a = 0.158836 0.437639I
b = 0.391622 + 0.558752I
1.64493 + 5.69302I 11.7058 8.3306I
15
III. I
v
1
= ha, 1742v
8
24207v
7
+ · · · + 683b + 648, v
9
13v
8
+ · · · 7v 1i
(i) Arc colorings
a
3
=
v
0
a
6
=
1
0
a
7
=
1
0
a
11
=
0
2.55051v
8
+ 35.4422v
7
+ ··· + 8.23426v 0.948755
a
8
=
1
0.0146413v
8
2.49048v
7
+ ··· + 26.1640v + 6.53587
a
9
=
0.0146413v
8
2.49048v
7
+ ··· + 26.1640v + 7.53587
0.0146413v
8
2.49048v
7
+ ··· + 26.1640v + 6.53587
a
5
=
1.01464v
8
15.4905v
7
+ ··· + 6.16398v + 0.535871
v
8
13v
7
22v
6
+ 15v
4
5v
3
25v
2
20v 7
a
2
=
1.01464v
8
+ 15.4905v
7
+ ··· 5.16398v 0.535871
v
8
+ 13v
7
+ 22v
6
15v
4
+ 5v
3
+ 25v
2
+ 20v + 7
a
1
=
1.01464v
8
+ 15.4905v
7
+ ··· 6.16398v 0.535871
v
8
+ 13v
7
+ 22v
6
15v
4
+ 5v
3
+ 25v
2
+ 20v + 7
a
4
=
v
0
a
10
=
2.55051v
8
+ 35.4422v
7
+ ··· + 8.23426v 0.948755
3.04539v
8
+ 45.0205v
7
+ ··· 17.1083v 5.46120
a
12
=
0.535871v
8
5.95168v
7
+ ··· 7.39824v + 1.41288
11.9649v
8
+ 161.823v
7
+ ··· + 128.794v + 26.4861
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1777
683
v
8
26404
683
v
7
+
7013
683
v
6
+
29374
683
v
5
14769
683
v
4
23374
683
v
3
329
683
v
2
+
9111
683
v
4901
683
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
7
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
9
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
10
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
11
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
9
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
11
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.920144 + 0.598375I
a = 0
b = 0.140343 + 0.966856I
0.13850 2.09337I 4.31028 + 3.82038I
v = 0.920144 0.598375I
a = 0
b = 0.140343 0.966856I
0.13850 + 2.09337I 4.31028 3.82038I
v = 0.590648 + 0.449402I
a = 0
b = 0.628449 + 0.875112I
2.26187 2.45442I 6.95900 + 1.69416I
v = 0.590648 0.449402I
a = 0
b = 0.628449 0.875112I
2.26187 + 2.45442I 6.95900 1.69416I
v = 0.719281 + 0.119276I
a = 0
b = 0.796005 + 0.733148I
6.01628 1.33617I 13.56769 + 0.26615I
v = 0.719281 0.119276I
a = 0
b = 0.796005 0.733148I
6.01628 + 1.33617I 13.56769 0.26615I
v = 0.365868 + 0.247975I
a = 0
b = 0.728966 0.986295I
5.24306 7.08493I 11.54551 + 1.34000I
v = 0.365868 0.247975I
a = 0
b = 0.728966 + 0.986295I
5.24306 + 7.08493I 11.54551 1.34000I
v = 14.5113
a = 0
b = 0.512358
2.84338 223.240
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
9
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
66
+ 21u
65
+ ··· + 31524u + 1)
c
2
((u 1)
9
)(u
6
+ u
5
+ ··· + u + 1)(u
66
11u
65
+ ··· + 184u 1)
c
3
u
9
(u
6
u
5
+ ··· u + 1)(u
66
+ 8u
65
+ ··· 7168u + 512)
c
4
((u + 1)
9
)(u
6
u
5
+ ··· u + 1)(u
66
11u
65
+ ··· + 184u 1)
c
5
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
66
+ 3u
65
+ ··· 2u 1)
c
6
u
9
(u
6
+ u
5
+ ··· + u + 1)(u
66
+ 8u
65
+ ··· 7168u + 512)
c
7
u
6
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
66
2u
65
+ ··· + 192u + 64)
c
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
66
+ 3u
65
+ ··· 2u 1)
c
9
(u 1)
6
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
66
8u
65
+ ··· 11u + 1)
c
10
u
6
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
66
2u
65
+ ··· + 192u + 64)
c
11
(u 1)
6
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
66
+ 28u
65
+ ··· 143u + 1)
c
12
(u + 1)
6
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
66
8u
65
+ ··· 11u + 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
66
+ 59y
65
+ ··· 992297680y + 1)
c
2
, c
4
(y 1)
9
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
66
21y
65
+ ··· 31524y + 1)
c
3
, c
6
y
9
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
66
60y
65
+ ··· 76021760y + 262144)
c
5
, c
8
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
66
+ 15y
65
+ ··· 20y + 1)
c
7
, c
10
y
6
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
66
+ 42y
65
+ ··· + 77824y + 4096)
c
9
, c
12
(y 1)
6
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
66
28y
65
+ ··· + 143y + 1)
c
11
(y 1)
6
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
66
+ 28y
65
+ ··· 12229y + 1)
21