12n
0087
(K12n
0087
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 8 4 10 5 12 7 9 11
Solving Sequence
8,10
7
4,11
3 6 5 9 12 2 1
c
7
c
10
c
3
c
6
c
5
c
8
c
11
c
2
c
1
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.21397 × 10
102
u
43
1.21296 × 10
103
u
42
+ ··· + 5.90528 × 10
102
b 1.68663 × 10
103
,
2.74407 × 10
102
u
43
1.57666 × 10
103
u
42
+ ··· + 2.95264 × 10
102
a 2.53471 × 10
103
, u
44
5u
43
+ ··· + 16u 4i
I
u
2
= hu
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
+ b 2u + 1,
3u
8
4u
7
+ 8u
6
7u
5
+ 13u
4
9u
3
+ 11u
2
+ a 6u + 6, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
I
u
3
= h−3u
2
a + 4au + u
2
+ 5b + 3a + 7u + 4, 2u
2
a + a
2
au + 12u
2
a + 5u + 22, u
3
+ u
2
+ 2u + 1i
I
u
4
= hb u, a, u
3
+ u
2
+ 2u + 1i
I
v
1
= ha, 3b + v 5, v
2
7v + 1i
* 5 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.21 × 10
102
u
43
1.21 × 10
103
u
42
+ · · · + 5.91 × 10
102
b 1.69 ×
10
103
, 2.74 × 10
102
u
43
1.58 × 10
103
u
42
+ · · · + 2.95 × 10
102
a 2.53 ×
10
103
, u
44
5u
43
+ · · · + 16u 4i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
4
=
0.929363u
43
+ 5.33983u
42
+ ··· 18.7982u + 8.58457
0.374913u
43
+ 2.05402u
42
+ ··· 21.5523u + 2.85613
a
11
=
u
u
3
+ u
a
3
=
1.07481u
43
+ 6.05592u
42
+ ··· 25.5449u + 8.66865
0.409892u
43
+ 2.21633u
42
+ ··· 21.9557u + 2.81153
a
6
=
0.145102u
43
0.707901u
42
+ ··· + 19.1582u + 1.02362
0.147085u
43
0.785533u
42
+ ··· + 9.81828u 1.73382
a
5
=
0.292188u
43
1.49343u
42
+ ··· + 28.9765u 0.710207
0.147085u
43
0.785533u
42
+ ··· + 9.81828u 1.73382
a
9
=
0.115004u
43
+ 0.603443u
42
+ ··· 8.54799u + 1.54989
0.253152u
43
+ 1.35100u
42
+ ··· 24.4831u + 3.51231
a
12
=
0.143897u
43
+ 0.773429u
42
+ ··· 15.0203u + 1.84872
0.289178u
43
+ 1.53362u
42
+ ··· 25.0070u + 3.61440
a
2
=
1.09992u
43
+ 6.16075u
42
+ ··· 35.4851u + 8.06492
0.238125u
43
+ 1.32996u
42
+ ··· 6.84876u + 1.04083
a
1
=
0.138148u
43
0.747554u
42
+ ··· + 15.9351u 1.96242
0.280915u
43
1.49627u
42
+ ··· + 25.9447u 3.73957
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25.5545u
43
140.944u
42
+ ··· + 1055.90u 191.724
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
44
+ 6u
43
+ ··· + 29830u + 1
c
2
, c
4
u
44
14u
43
+ ··· 166u 1
c
3
, c
6
u
44
5u
43
+ ··· + 3072u + 512
c
5
, c
8
u
44
3u
43
+ ··· + 4096u 512
c
7
, c
10
u
44
+ 5u
43
+ ··· 16u 4
c
9
, c
11
u
44
+ 7u
43
+ ··· + 83u 1
c
12
u
44
33u
43
+ ··· 6317u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
44
+ 78y
43
+ ··· 889350874y + 1
c
2
, c
4
y
44
6y
43
+ ··· 29830y + 1
c
3
, c
6
y
44
+ 63y
43
+ ··· 69206016y + 262144
c
5
, c
8
y
44
+ 49y
43
+ ··· 15859712y + 262144
c
7
, c
10
y
44
3y
43
+ ··· 1304y + 16
c
9
, c
11
y
44
33y
43
+ ··· 6317y + 1
c
12
y
44
37y
43
+ ··· 39734481y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.048281 + 1.061060I
a = 0.370251 + 0.083303I
b = 0.623557 0.693283I
2.03545 1.53423I 2.00000 + 3.28440I
u = 0.048281 1.061060I
a = 0.370251 0.083303I
b = 0.623557 + 0.693283I
2.03545 + 1.53423I 2.00000 3.28440I
u = 0.444024 + 0.972451I
a = 0.213577 0.298798I
b = 0.151321 0.361837I
0.22354 3.19884I 0. + 5.55216I
u = 0.444024 0.972451I
a = 0.213577 + 0.298798I
b = 0.151321 + 0.361837I
0.22354 + 3.19884I 0. 5.55216I
u = 0.874663 + 0.275257I
a = 1.04774 + 1.16816I
b = 0.236448 + 0.150247I
3.87014 2.97279I 3.60919 + 6.63471I
u = 0.874663 0.275257I
a = 1.04774 1.16816I
b = 0.236448 0.150247I
3.87014 + 2.97279I 3.60919 6.63471I
u = 0.310742 + 1.065360I
a = 0.269693 + 1.146740I
b = 0.465484 + 0.146095I
5.03100 + 0.55063I 1.92030 1.63801I
u = 0.310742 1.065360I
a = 0.269693 1.146740I
b = 0.465484 0.146095I
5.03100 0.55063I 1.92030 + 1.63801I
u = 0.627914 + 0.971697I
a = 0.330748 0.066410I
b = 0.034558 + 0.334761I
2.13500 + 7.76603I 0. 12.26438I
u = 0.627914 0.971697I
a = 0.330748 + 0.066410I
b = 0.034558 0.334761I
2.13500 7.76603I 0. + 12.26438I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.088600 + 0.454876I
a = 0.415899 0.644451I
b = 0.653494 0.268396I
2.35471 1.62269I 0. + 2.86308I
u = 1.088600 0.454876I
a = 0.415899 + 0.644451I
b = 0.653494 + 0.268396I
2.35471 + 1.62269I 0. 2.86308I
u = 1.171290 + 0.197003I
a = 0.058277 + 0.836682I
b = 1.49981 0.37516I
4.40564 + 2.10618I 0
u = 1.171290 0.197003I
a = 0.058277 0.836682I
b = 1.49981 + 0.37516I
4.40564 2.10618I 0
u = 0.625793 + 1.141240I
a = 0.475335 0.251871I
b = 1.43711 + 0.62601I
0.60424 3.28908I 0
u = 0.625793 1.141240I
a = 0.475335 + 0.251871I
b = 1.43711 0.62601I
0.60424 + 3.28908I 0
u = 0.231224 + 1.281260I
a = 2.55356 0.49814I
b = 3.85023 0.67062I
4.23715 2.76938I 48.8073 + 0.I
u = 0.231224 1.281260I
a = 2.55356 + 0.49814I
b = 3.85023 + 0.67062I
4.23715 + 2.76938I 48.8073 + 0.I
u = 1.271420 + 0.302065I
a = 0.143630 + 1.274350I
b = 0.295378 0.275889I
10.46410 4.58464I 0
u = 1.271420 0.302065I
a = 0.143630 1.274350I
b = 0.295378 + 0.275889I
10.46410 + 4.58464I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.652018 + 0.010138I
a = 0.75783 + 3.15503I
b = 0.1218200 0.0058498I
4.00876 2.95005I 9.2752 + 14.0588I
u = 0.652018 0.010138I
a = 0.75783 3.15503I
b = 0.1218200 + 0.0058498I
4.00876 + 2.95005I 9.2752 14.0588I
u = 0.585308 + 0.189725I
a = 1.96529 0.47582I
b = 1.23447 + 0.72984I
0.967972 0.798268I 5.17338 0.48170I
u = 0.585308 0.189725I
a = 1.96529 + 0.47582I
b = 1.23447 0.72984I
0.967972 + 0.798268I 5.17338 + 0.48170I
u = 1.30067 + 0.60834I
a = 0.056153 + 0.571188I
b = 0.935749 0.007550I
8.25016 + 5.56575I 0
u = 1.30067 0.60834I
a = 0.056153 0.571188I
b = 0.935749 + 0.007550I
8.25016 5.56575I 0
u = 0.531060
a = 16.7494
b = 4.82907
0.460937 368.890
u = 0.503995
a = 1.38825
b = 0.276534
1.20368 8.97050
u = 0.311757
a = 0.443655
b = 1.64605
7.14674 39.2060
u = 1.13348 + 1.25222I
a = 0.883536 + 1.035620I
b = 2.30222 + 0.38639I
14.9516 + 15.4441I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.13348 1.25222I
a = 0.883536 1.035620I
b = 2.30222 0.38639I
14.9516 15.4441I 0
u = 0.044479 + 0.277185I
a = 13.9186 + 9.4770I
b = 0.649522 0.305876I
0.651471 0.106624I 43.8474 + 14.3936I
u = 0.044479 0.277185I
a = 13.9186 9.4770I
b = 0.649522 + 0.305876I
0.651471 + 0.106624I 43.8474 14.3936I
u = 1.36977 + 1.10574I
a = 0.621322 0.964621I
b = 2.15902 0.17933I
16.9016 + 6.9619I 0
u = 1.36977 1.10574I
a = 0.621322 + 0.964621I
b = 2.15902 + 0.17933I
16.9016 6.9619I 0
u = 1.17136 + 1.33639I
a = 0.817996 0.874491I
b = 2.44154 0.26744I
10.77560 8.87064I 0
u = 1.17136 1.33639I
a = 0.817996 + 0.874491I
b = 2.44154 + 0.26744I
10.77560 + 8.87064I 0
u = 1.37757 + 1.14007I
a = 0.503126 0.688009I
b = 2.39105 + 0.13674I
15.5975 6.3488I 0
u = 1.37757 1.14007I
a = 0.503126 + 0.688009I
b = 2.39105 0.13674I
15.5975 + 6.3488I 0
u = 1.13292 + 1.40159I
a = 0.854370 + 0.676020I
b = 2.37293 + 0.03727I
15.8788 + 2.3692I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.13292 1.40159I
a = 0.854370 0.676020I
b = 2.37293 0.03727I
15.8788 2.3692I 0
u = 1.41982 + 1.12122I
a = 0.510761 + 0.835178I
b = 2.37704 + 0.10328I
11.64120 0.54721I 0
u = 1.41982 1.12122I
a = 0.510761 0.835178I
b = 2.37704 0.10328I
11.64120 + 0.54721I 0
u = 0.112220
a = 3.82348
b = 0.564184
1.00318 10.1720
9
II. I
u
2
= hu
8
2u
7
+ · · · + b + 1, 3u
8
4u
7
+ · · · + a + 6, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
4
=
3u
8
+ 4u
7
8u
6
+ 7u
5
13u
4
+ 9u
3
11u
2
+ 6u 6
u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
3u
2
+ 2u 1
a
11
=
u
u
3
+ u
a
3
=
3u
8
+ 4u
7
8u
6
+ 7u
5
13u
4
+ 9u
3
11u
2
+ 6u 6
u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
3u
2
+ 2u 1
a
6
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
9
=
u
4
+ u
2
+ 1
u
4
a
12
=
u
6
u
4
2u
2
1
u
8
2u
6
2u
4
2u
2
a
2
=
3u
8
+ 4u
7
8u
6
+ 7u
5
13u
4
+ 9u
3
12u
2
+ 6u 7
u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
4u
2
+ 2u 1
a
1
=
u
2
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45u
8
71u
7
+ 127u
6
112u
5
+ 192u
4
149u
3
+ 165u
2
83u + 85
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
7
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
8
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
9
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
10
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
11
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
12
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
9
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
12
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.920144 + 0.598375I
b = 1.004430 0.297869I
3.42837 2.09337I 7.68972 + 3.82038I
u = 0.140343 0.966856I
a = 0.920144 0.598375I
b = 1.004430 + 0.297869I
3.42837 + 2.09337I 7.68972 3.82038I
u = 0.628449 + 0.875112I
a = 0.590648 + 0.449402I
b = 0.275254 0.816341I
1.02799 2.45442I 5.04100 + 1.69416I
u = 0.628449 0.875112I
a = 0.590648 0.449402I
b = 0.275254 + 0.816341I
1.02799 + 2.45442I 5.04100 1.69416I
u = 0.796005 + 0.733148I
a = 0.719281 + 0.119276I
b = 0.070080 + 0.850995I
2.72642 1.33617I 1.56769 + 0.26615I
u = 0.796005 0.733148I
a = 0.719281 0.119276I
b = 0.070080 0.850995I
2.72642 + 1.33617I 1.56769 0.26615I
u = 0.728966 + 0.986295I
a = 0.365868 0.247975I
b = 0.195086 + 0.635552I
1.95319 + 7.08493I 0.45449 1.34000I
u = 0.728966 0.986295I
a = 0.365868 + 0.247975I
b = 0.195086 0.635552I
1.95319 7.08493I 0.45449 + 1.34000I
u = 0.512358
a = 14.5113
b = 3.80937
0.446489 211.240
13
III. I
u
3
= h−3u
2
a + 4au + u
2
+ 5b + 3a + 7u + 4, 2u
2
a + a
2
au + 12u
2
a + 5u + 22, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
4
=
a
3
5
u
2
a
1
5
u
2
+ ···
3
5
a
4
5
a
11
=
u
u
2
u 1
a
3
=
2
5
u
2
a
1
5
u
2
+ ··· +
2
5
a
4
5
6
5
u
2
a +
3
5
u
2
+ ···
1
5
a +
2
5
a
6
=
1
5
u
2
a
18
5
u
2
+ ··· +
1
5
a
27
5
0
a
5
=
1
5
u
2
a
18
5
u
2
+ ··· +
1
5
a
27
5
0
a
9
=
1
0
a
12
=
u
2
1
u
2
u 1
a
2
=
u
2
a au 4u
2
3u 6
6
5
u
2
a +
3
5
u
2
+ ···
1
5
a +
2
5
a
1
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12
5
u
2
a
31
5
au +
101
5
u
2
37
5
a +
52
5
u +
144
5
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
c
12
(u
3
u
2
+ 2u 1)
2
c
2
, c
11
(u
3
+ u
2
1)
2
c
4
, c
9
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
, c
7
(u
3
+ u
2
+ 2u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
9
c
11
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.477322 + 0.078540I
b = 0.622561 1.169310I
5.65624I 1.47396 + 5.95889I
u = 0.215080 + 1.307140I
a = 2.06248 + 0.10404I
b = 2.91724 + 0.98673I
4.13758 2.82812I 14.7077 + 20.6881I
u = 0.215080 1.307140I
a = 0.477322 0.078540I
b = 0.622561 + 1.169310I
5.65624I 1.47396 5.95889I
u = 0.215080 1.307140I
a = 2.06248 0.10404I
b = 2.91724 0.98673I
4.13758 + 2.82812I 14.7077 20.6881I
u = 0.569840
a = 0.53980 + 4.77033I
b = 0.039798 + 0.241870I
4.13758 2.82812I 27.7662 14.7292I
u = 0.569840
a = 0.53980 4.77033I
b = 0.039798 0.241870I
4.13758 + 2.82812I 27.7662 + 14.7292I
17
IV. I
u
4
= hb u, a, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
4
=
0
u
a
11
=
u
u
2
u 1
a
3
=
u
u
2
u 1
a
6
=
1
0
a
5
=
1
0
a
9
=
1
0
a
12
=
u
2
1
u
2
u 1
a
2
=
u
2
1
u
2
u 1
a
1
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
10
c
12
u
3
u
2
+ 2u 1
c
2
, c
11
u
3
+ u
2
1
c
4
, c
9
u
3
u
2
+ 1
c
5
, c
8
u
3
c
6
, c
7
u
3
+ u
2
+ 2u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
9
c
11
y
3
y
2
+ 2y 1
c
5
, c
8
y
3
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0
b = 0.215080 + 1.307140I
0 0
u = 0.215080 1.307140I
a = 0
b = 0.215080 1.307140I
0 0
u = 0.569840
a = 0
b = 0.569840
0 0
21
V. I
v
1
= ha, 3b + v 5, v
2
7v + 1i
(i) Arc colorings
a
8
=
1
0
a
10
=
v
0
a
7
=
1
0
a
4
=
0
1
3
v +
5
3
a
11
=
v
0
a
3
=
1
3
v +
5
3
1
3
v +
5
3
a
6
=
1
1
3
v
8
3
a
5
=
1
3
v
5
3
1
3
v
8
3
a
9
=
2
3
v +
16
3
v + 7
a
12
=
5
3
v
16
3
v 7
a
2
=
1
1
3
v
8
3
a
1
=
2
3
v
16
3
v 7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 49
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
7
, c
10
u
2
c
8
u
2
+ 3u + 1
c
9
(u + 1)
2
c
11
, c
12
(u 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
7
, c
10
y
2
c
9
, c
11
, c
12
(y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.145898
a = 0
b = 1.61803
7.23771 49.0000
v = 6.85410
a = 0
b = 0.618034
0.657974 49.0000
25
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
9
(u
2
3u + 1)(u
3
u
2
+ 2u 1)
3
· (u
44
+ 6u
43
+ ··· + 29830u + 1)
c
2
((u 1)
9
)(u
2
+ u 1)(u
3
+ u
2
1)
3
(u
44
14u
43
+ ··· 166u 1)
c
3
u
9
(u
2
+ u 1)(u
3
u
2
+ 2u 1)
3
(u
44
5u
43
+ ··· + 3072u + 512)
c
4
((u + 1)
9
)(u
2
u 1)(u
3
u
2
+ 1)
3
(u
44
14u
43
+ ··· 166u 1)
c
5
u
9
(u
2
3u + 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
44
3u
43
+ ··· + 4096u 512)
c
6
u
9
(u
2
u 1)(u
3
+ u
2
+ 2u + 1)
3
(u
44
5u
43
+ ··· + 3072u + 512)
c
7
u
2
(u
3
+ u
2
+ 2u + 1)
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
44
+ 5u
43
+ ··· 16u 4)
c
8
u
9
(u
2
+ 3u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
44
3u
43
+ ··· + 4096u 512)
c
9
(u + 1)
2
(u
3
u
2
+ 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
44
+ 7u
43
+ ··· + 83u 1)
c
10
u
2
(u
3
u
2
+ 2u 1)
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
44
+ 5u
43
+ ··· 16u 4)
c
11
(u 1)
2
(u
3
+ u
2
1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
44
+ 7u
43
+ ··· + 83u 1)
c
12
(u 1)
2
(u
3
u
2
+ 2u 1)
3
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
44
33u
43
+ ··· 6317u + 1)
26
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
9
(y
2
7y + 1)(y
3
+ 3y
2
+ 2y 1)
3
· (y
44
+ 78y
43
+ ··· 889350874y + 1)
c
2
, c
4
(y 1)
9
(y
2
3y + 1)(y
3
y
2
+ 2y 1)
3
· (y
44
6y
43
+ ··· 29830y + 1)
c
3
, c
6
y
9
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)
3
· (y
44
+ 63y
43
+ ··· 69206016y + 262144)
c
5
, c
8
y
9
(y
2
7y + 1)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
44
+ 49y
43
+ ··· 15859712y + 262144)
c
7
, c
10
y
2
(y
3
+ 3y
2
+ 2y 1)
3
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
44
3y
43
+ ··· 1304y + 16)
c
9
, c
11
(y 1)
2
(y
3
y
2
+ 2y 1)
3
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
44
33y
43
+ ··· 6317y + 1)
c
12
(y 1)
2
(y
3
+ 3y
2
+ 2y 1)
3
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
44
37y
43
+ ··· 39734481y + 1)
27