12n
0089
(K12n
0089
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 8 3 11 5 12 7 9 10
Solving Sequence
8,11 3,7
6 5 9 12 2 1 4 10
c
7
c
6
c
5
c
8
c
11
c
2
c
1
c
4
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.87206 × 10
64
u
33
2.48020 × 10
64
u
32
+ ··· + 2.02349 × 10
64
b + 8.89696 × 10
65
,
6.94907 × 10
63
u
33
+ 9.26153 × 10
63
u
32
+ ··· + 2.89069 × 10
63
a 3.41795 × 10
65
,
u
34
2u
33
+ ··· + 160u 32i
I
u
2
= h−2u
7
+ u
6
+ 3u
5
3u
4
4u
3
+ 3u
2
+ b + 2u 4, 6u
7
2u
6
8u
5
+ 7u
4
+ 11u
3
5u
2
+ a 4u + 9,
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
I
v
1
= ha, 16v
4
47v
3
36v
2
+ 29b 104v + 5, v
5
+ 3v
4
+ 3v
3
+ 8v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.87 × 10
64
u
33
2.48 × 10
64
u
32
+ · · · + 2.02 × 10
64
b + 8.90 ×
10
65
, 6.95 × 10
63
u
33
+ 9.26 × 10
63
u
32
+ · · · + 2.89 × 10
63
a 3.42 ×
10
65
, u
34
2u
33
+ · · · + 160u 32i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
2.40394u
33
3.20391u
32
+ ··· 401.792u + 118.240
0.925166u
33
+ 1.22571u
32
+ ··· + 151.603u 43.9685
a
7
=
1
u
2
a
6
=
0.0490683u
33
0.0407884u
32
+ ··· 6.92779u + 0.312774
0.0578563u
33
+ 0.0671443u
32
+ ··· + 7.65767u 1.83101
a
5
=
0.00878796u
33
+ 0.0263559u
32
+ ··· + 0.729884u 1.51823
0.0578563u
33
+ 0.0671443u
32
+ ··· + 7.65767u 1.83101
a
9
=
0.135575u
33
0.179353u
32
+ ··· 21.7295u + 6.37504
0.0869253u
33
+ 0.113172u
32
+ ··· + 14.9258u 4.00887
a
12
=
0.159247u
33
+ 0.209304u
32
+ ··· + 26.3062u 7.44642
0.0515752u
33
0.0698375u
32
+ ··· 7.79789u + 2.42273
a
2
=
2.36320u
33
3.16331u
32
+ ··· 395.428u + 117.533
0.844124u
33
+ 1.12821u
32
+ ··· + 140.065u 41.0098
a
1
=
0.222500u
33
0.292525u
32
+ ··· 36.6553u + 10.3839
0.0181808u
33
+ 0.0260797u
32
+ ··· + 2.35027u 0.870343
a
4
=
2.25921u
33
3.02557u
32
+ ··· 381.646u + 112.963
0.870163u
33
+ 1.15421u
32
+ ··· + 144.300u 42.2250
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.73770u
33
+ 2.33240u
32
+ ··· + 305.829u 87.7743
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
34
+ 50u
33
+ ··· + 7022u + 1
c
2
, c
4
u
34
10u
33
+ ··· 94u + 1
c
3
, c
6
u
34
+ 6u
33
+ ··· + 1408u + 256
c
5
, c
8
u
34
3u
33
+ ··· + 2u 1
c
7
, c
10
u
34
+ 2u
33
+ ··· 160u 32
c
9
, c
11
, c
12
u
34
7u
33
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
34
122y
33
+ ··· 49242950y + 1
c
2
, c
4
y
34
50y
33
+ ··· 7022y + 1
c
3
, c
6
y
34
+ 54y
33
+ ··· 5357568y + 65536
c
5
, c
8
y
34
y
33
+ ··· 14y + 1
c
7
, c
10
y
34
36y
33
+ ··· 3584y + 1024
c
9
, c
11
, c
12
y
34
41y
33
+ ··· 152y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.956156 + 0.210490I
a = 0.92043 2.41941I
b = 0.297004 + 1.016390I
3.57437 2.68652I 15.9734 + 5.7320I
u = 0.956156 0.210490I
a = 0.92043 + 2.41941I
b = 0.297004 1.016390I
3.57437 + 2.68652I 15.9734 5.7320I
u = 0.825291 + 0.508770I
a = 0.290634 + 0.392014I
b = 0.215796 + 0.185230I
1.50616 + 2.15286I 1.89528 3.55598I
u = 0.825291 0.508770I
a = 0.290634 0.392014I
b = 0.215796 0.185230I
1.50616 2.15286I 1.89528 + 3.55598I
u = 0.459276 + 0.600077I
a = 0.34212 2.13952I
b = 0.325798 + 0.681195I
4.37210 + 0.56022I 15.7627 4.5815I
u = 0.459276 0.600077I
a = 0.34212 + 2.13952I
b = 0.325798 0.681195I
4.37210 0.56022I 15.7627 + 4.5815I
u = 1.25779
a = 0.262102
b = 0.999548
7.19178 11.0680
u = 0.421643 + 0.589535I
a = 0.76749 1.22638I
b = 0.076416 0.398409I
1.23502 + 0.89870I 5.08124 + 0.75731I
u = 0.421643 0.589535I
a = 0.76749 + 1.22638I
b = 0.076416 + 0.398409I
1.23502 0.89870I 5.08124 0.75731I
u = 0.679857 + 0.008937I
a = 1.75490 5.31791I
b = 0.87873 + 2.06096I
2.48043 + 0.15884I 35.3818 0.1674I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679857 0.008937I
a = 1.75490 + 5.31791I
b = 0.87873 2.06096I
2.48043 0.15884I 35.3818 + 0.1674I
u = 1.204240 + 0.640025I
a = 0.153762 0.187566I
b = 0.460927 + 0.211334I
3.73420 5.65524I 8.00000 + 0.I
u = 1.204240 0.640025I
a = 0.153762 + 0.187566I
b = 0.460927 0.211334I
3.73420 + 5.65524I 8.00000 + 0.I
u = 0.610196
a = 0.685401
b = 0.364452
0.859418 11.8170
u = 0.021309 + 0.580331I
a = 0.0854012 0.0908812I
b = 0.412066 + 1.299410I
7.07612 4.33049I 3.74509 + 2.01968I
u = 0.021309 0.580331I
a = 0.0854012 + 0.0908812I
b = 0.412066 1.299410I
7.07612 + 4.33049I 3.74509 2.01968I
u = 0.033914 + 0.417650I
a = 0.837170 0.008519I
b = 0.336239 0.914967I
0.57544 1.50411I 4.52476 + 4.55824I
u = 0.033914 0.417650I
a = 0.837170 + 0.008519I
b = 0.336239 + 0.914967I
0.57544 + 1.50411I 4.52476 4.55824I
u = 0.333190
a = 5.02872
b = 1.11629
2.28474 0.324850
u = 1.71423 + 0.26922I
a = 0.105003 1.399260I
b = 0.34011 + 1.96867I
13.7038 + 7.6996I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.71423 0.26922I
a = 0.105003 + 1.399260I
b = 0.34011 1.96867I
13.7038 7.6996I 0
u = 1.71822 + 0.31095I
a = 0.469943 1.223830I
b = 0.06244 + 1.83419I
13.63590 + 0.50051I 0
u = 1.71822 0.31095I
a = 0.469943 + 1.223830I
b = 0.06244 1.83419I
13.63590 0.50051I 0
u = 1.74355 + 0.15186I
a = 0.014975 1.244930I
b = 1.07725 + 2.72182I
10.90540 + 1.31562I 0
u = 1.74355 0.15186I
a = 0.014975 + 1.244930I
b = 1.07725 2.72182I
10.90540 1.31562I 0
u = 0.01973 + 1.82329I
a = 0.0829691 + 0.0828182I
b = 0.11557 1.98219I
16.1286 + 4.0950I 0
u = 0.01973 1.82329I
a = 0.0829691 0.0828182I
b = 0.11557 + 1.98219I
16.1286 4.0950I 0
u = 1.85359 + 0.31631I
a = 0.231341 1.229070I
b = 0.48186 + 1.53845I
12.71500 5.35446I 0
u = 1.85359 0.31631I
a = 0.231341 + 1.229070I
b = 0.48186 1.53845I
12.71500 + 5.35446I 0
u = 1.72228 + 0.86852I
a = 0.576188 + 1.082400I
b = 0.76478 2.07350I
18.1726 13.4286I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72228 0.86852I
a = 0.576188 1.082400I
b = 0.76478 + 2.07350I
18.1726 + 13.4286I 0
u = 1.71660 + 0.90954I
a = 0.667196 + 0.794326I
b = 0.51034 1.64958I
18.3538 + 5.3451I 0
u = 1.71660 0.90954I
a = 0.667196 0.794326I
b = 0.51034 + 1.64958I
18.3538 5.3451I 0
u = 1.95923
a = 0.601374
b = 0.892648
15.4063 0
8
II. I
u
2
= h−2u
7
+ u
6
+ · · · + b 4, 6u
7
2u
6
+ · · · + a + 9, u
8
u
7
u
6
+
2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 5u
2
+ 4u 9
2u
7
u
6
3u
5
+ 3u
4
+ 4u
3
3u
2
2u + 4
a
7
=
1
u
2
a
6
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
9
=
u
4
u
2
+ 1
u
4
a
12
=
u
6
u
4
+ 2u
2
1
u
7
+ u
6
+ 2u
5
u
4
2u
3
+ 2u
2
+ 2u 1
a
2
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 6u
2
+ 4u 10
2u
7
u
6
3u
5
+ 3u
4
+ 4u
3
2u
2
2u + 4
a
1
=
u
2
1
u
2
a
4
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 5u
2
+ 4u 9
2u
7
u
6
3u
5
+ 3u
4
+ 4u
3
3u
2
2u + 4
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 44u
7
+ 15u
6
+ 58u
5
53u
4
78u
3
+ 42u
2
+ 28u 85
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
7
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
8
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
9
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
10
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
11
, c
12
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
8
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
9
, c
11
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 1.194470 0.635084I
b = 0.281371 1.128550I
2.68559 + 1.13123I 12.74421 + 0.55338I
u = 0.570868 0.730671I
a = 1.194470 + 0.635084I
b = 0.281371 + 1.128550I
2.68559 1.13123I 12.74421 0.55338I
u = 0.855237 + 0.665892I
a = 0.637416 0.344390I
b = 0.208670 + 0.825203I
0.51448 + 2.57849I 9.60894 4.72239I
u = 0.855237 0.665892I
a = 0.637416 + 0.344390I
b = 0.208670 0.825203I
0.51448 2.57849I 9.60894 + 4.72239I
u = 1.09818
a = 0.687555
b = 0.829189
8.14766 20.4520
u = 1.031810 + 0.655470I
a = 0.286111 + 0.344558I
b = 0.284386 0.605794I
4.02461 6.44354I 12.4754 + 9.9976I
u = 1.031810 0.655470I
a = 0.286111 0.344558I
b = 0.284386 + 0.605794I
4.02461 + 6.44354I 12.4754 9.9976I
u = 0.603304
a = 7.54843
b = 2.74744
2.48997 72.8910
12
III.
I
v
1
= ha, 16v
4
47v
3
36v
2
+ 29b 104v + 5, v
5
+ 3v
4
+ 3v
3
+ 8v
2
+ v + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
v
0
a
3
=
0
0.551724v
4
+ 1.62069v
3
+ ··· + 3.58621v 0.172414
a
7
=
1
0
a
6
=
1
0.344828v
4
1.13793v
3
+ ··· 3.24138v 1.51724
a
5
=
0.344828v
4
1.13793v
3
+ ··· 3.24138v 0.517241
0.344828v
4
1.13793v
3
+ ··· 3.24138v 1.51724
a
9
=
0.655172v
4
+ 1.86207v
3
+ ··· + 4.75862v + 0.482759
v
4
+ 3v
3
+ 3v
2
+ 8v + 1
a
12
=
0.655172v
4
1.86207v
3
+ ··· 3.75862v 0.482759
v
4
3v
3
3v
2
8v 1
a
2
=
0.655172v
4
1.86207v
3
+ ··· 4.75862v 0.482759
0.137931v
4
0.655172v
3
+ ··· 1.89655v 2.20690
a
1
=
0.655172v
4
1.86207v
3
+ ··· 4.75862v 0.482759
v
4
3v
3
3v
2
8v 1
a
4
=
0.551724v
4
+ 1.62069v
3
+ ··· + 3.58621v 0.172414
0.0344828v
4
+ 0.413793v
3
+ ··· + 0.724138v + 1.55172
a
10
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
65
29
v
4
+
142
29
v
3
+
81
29
v
2
+
437
29
v
613
29
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
5u
4
+ 8u
3
3u
2
u 1
c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
u
4
+ 2u
3
u
2
+ u 1
c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
u
5
3u
4
+ 4u
3
u
2
u + 1
c
6
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
7
, c
10
u
5
c
8
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
9
(u 1)
5
c
11
, c
12
(u + 1)
5
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
2
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
, c
6
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
8
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
7
, c
10
y
5
c
9
, c
11
, c
12
(y 1)
5
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.01014 + 1.59703I
a = 0
b = 0.339110 0.822375I
1.97403 1.53058I 13.4575 + 4.4032I
v = 0.01014 1.59703I
a = 0
b = 0.339110 + 0.822375I
1.97403 + 1.53058I 13.4575 4.4032I
v = 0.043806 + 0.365575I
a = 0
b = 0.455697 + 1.200150I
7.51750 4.40083I 22.0438 + 5.2094I
v = 0.043806 0.365575I
a = 0
b = 0.455697 1.200150I
7.51750 + 4.40083I 22.0438 5.2094I
v = 2.89210
a = 0
b = 0.766826
4.04602 2.99730
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
5
5u
4
+ ··· u 1)(u
34
+ 50u
33
+ ··· + 7022u + 1)
c
2
((u 1)
8
)(u
5
+ u
4
+ ··· + u 1)(u
34
10u
33
+ ··· 94u + 1)
c
3
u
8
(u
5
u
4
+ ··· + u 1)(u
34
+ 6u
33
+ ··· + 1408u + 256)
c
4
((u + 1)
8
)(u
5
u
4
+ ··· + u + 1)(u
34
10u
33
+ ··· 94u + 1)
c
5
(u
5
3u
4
+ 4u
3
u
2
u + 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
34
3u
33
+ ··· + 2u 1)
c
6
u
8
(u
5
+ u
4
+ ··· + u + 1)(u
34
+ 6u
33
+ ··· + 1408u + 256)
c
7
u
5
(u
8
u
7
+ ··· + 2u 1)(u
34
+ 2u
33
+ ··· 160u 32)
c
8
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
34
3u
33
+ ··· + 2u 1)
c
9
((u 1)
5
)(u
8
+ u
7
+ ··· + 2u 1)(u
34
7u
33
+ ··· + 2u + 1)
c
10
u
5
(u
8
+ u
7
+ ··· 2u 1)(u
34
+ 2u
33
+ ··· 160u 32)
c
11
, c
12
((u + 1)
5
)(u
8
u
7
+ ··· 2u 1)(u
34
7u
33
+ ··· + 2u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
· (y
34
122y
33
+ ··· 49242950y + 1)
c
2
, c
4
((y 1)
8
)(y
5
5y
4
+ ··· y 1)(y
34
50y
33
+ ··· 7022y + 1)
c
3
, c
6
y
8
(y
5
+ 3y
4
+ ··· y 1)(y
34
+ 54y
33
+ ··· 5357568y + 65536)
c
5
, c
8
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
34
y
33
+ ··· 14y + 1)
c
7
, c
10
y
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
34
36y
33
+ ··· 3584y + 1024)
c
9
, c
11
, c
12
(y 1)
5
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
34
41y
33
+ ··· 152y + 1)
18