12n
0090
(K12n
0090
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 9 3 11 6 12 1 8 10
Solving Sequence
3,6 7,11
8 9 12 5 2 1 4 10
c
6
c
7
c
8
c
11
c
5
c
2
c
1
c
4
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h9.96682 × 10
157
u
51
+ 6.43522 × 10
157
u
50
+ ··· + 4.80775 × 10
159
b 2.81921 × 10
161
,
8.50264 × 10
159
u
51
4.59905 × 10
160
u
50
+ ··· + 4.80775 × 10
159
a 2.25629 × 10
162
,
u
52
+ 6u
51
+ ··· 384u + 256i
I
u
2
= h−u
5
+ 2u
3
+ u
2
+ b 2u 1, u
5
2u
4
+ u
3
+ 3u
2
+ a 2, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
v
1
= ha, 435v
7
+ 1730v
6
+ 9811v
5
+ 13983v
4
+ 4411v
3
5372v
2
+ 287b 4318v 1024,
v
8
4v
7
22v
6
34v
5
17v
4
+ 6v
3
+ 11v
2
+ 5v + 1i
* 3 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9.97 × 10
157
u
51
+ 6.44 × 10
157
u
50
+ · · · + 4.81 × 10
159
b 2.82 ×
10
161
, 8.50 × 10
159
u
51
4.60 × 10
160
u
50
+ · · · + 4.81 × 10
159
a 2.26 ×
10
162
, u
52
+ 6u
51
+ · · · 384u + 256i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
1.76853u
51
+ 9.56590u
50
+ ··· 2926.51u + 469.302
0.0207307u
51
0.0133851u
50
+ ··· 241.958u + 58.6388
a
8
=
1.11147u
51
+ 6.04469u
50
+ ··· 1943.07u + 322.353
1.41662u
51
+ 7.57791u
50
+ ··· 1710.65u + 565.183
a
9
=
2.52808u
51
+ 13.6226u
50
+ ··· 3653.72u + 887.535
1.41662u
51
+ 7.57791u
50
+ ··· 1710.65u + 565.183
a
12
=
2.24827u
51
+ 12.0747u
50
+ ··· 3114.80u + 728.310
2.81685u
51
+ 15.1244u
50
+ ··· 3490.75u + 1142.79
a
5
=
0.522374u
51
2.76840u
50
+ ··· + 479.530u 230.084
1.17566u
51
6.25747u
50
+ ··· + 1309.09u 442.421
a
2
=
0.653284u
51
3.48907u
50
+ ··· + 829.556u 212.337
1.17566u
51
6.25747u
50
+ ··· + 1309.09u 442.421
a
1
=
0.653284u
51
3.48907u
50
+ ··· + 829.556u 212.337
0.883950u
51
4.70152u
50
+ ··· + 976.480u 332.178
a
4
=
u
u
a
10
=
2.40012u
51
+ 12.9314u
50
+ ··· 3603.52u + 730.563
1.81072u
51
+ 9.76249u
50
+ ··· 2349.30u + 761.984
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.23763u
51
+ 16.6512u
50
+ ··· 115.091u + 1897.90
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 14u
51
+ ··· + 1402u + 1
c
2
, c
4
u
52
10u
51
+ ··· 42u + 1
c
3
, c
6
u
52
+ 6u
51
+ ··· 384u + 256
c
5
, c
8
u
52
+ 3u
51
+ ··· + 2u + 1
c
7
, c
11
u
52
2u
51
+ ··· 192u + 64
c
9
, c
10
, c
12
u
52
+ 8u
51
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
+ 58y
51
+ ··· 1883250y + 1
c
2
, c
4
y
52
14y
51
+ ··· 1402y + 1
c
3
, c
6
y
52
54y
51
+ ··· 6144000y + 65536
c
5
, c
8
y
52
+ 11y
51
+ ··· 2y + 1
c
7
, c
11
y
52
42y
51
+ ··· + 4096y + 4096
c
9
, c
10
, c
12
y
52
56y
51
+ ··· 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.894300 + 0.467621I
a = 1.21589 + 0.98600I
b = 0.940205 + 0.671189I
2.35126 + 1.18530I 0
u = 0.894300 0.467621I
a = 1.21589 0.98600I
b = 0.940205 0.671189I
2.35126 1.18530I 0
u = 0.077034 + 0.976513I
a = 0.541763 + 0.843119I
b = 0.924664 + 0.513211I
8.16733 1.74753I 0
u = 0.077034 0.976513I
a = 0.541763 0.843119I
b = 0.924664 0.513211I
8.16733 + 1.74753I 0
u = 0.311772 + 0.824230I
a = 0.61198 1.93647I
b = 1.362440 0.024471I
2.07038 + 1.52953I 6.00000 4.40429I
u = 0.311772 0.824230I
a = 0.61198 + 1.93647I
b = 1.362440 + 0.024471I
2.07038 1.52953I 6.00000 + 4.40429I
u = 0.349211 + 0.778404I
a = 0.893037 + 0.518298I
b = 0.299421 + 0.403800I
1.82480 + 1.05655I 2.50386 1.55405I
u = 0.349211 0.778404I
a = 0.893037 0.518298I
b = 0.299421 0.403800I
1.82480 1.05655I 2.50386 + 1.55405I
u = 0.212493 + 1.195980I
a = 0.789348 + 0.054066I
b = 2.03489 0.17085I
0.23912 + 3.31860I 0
u = 0.212493 1.195980I
a = 0.789348 0.054066I
b = 2.03489 + 0.17085I
0.23912 3.31860I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.197920 + 0.212460I
a = 0.1235270 + 0.0251718I
b = 0.208678 0.717859I
2.51889 + 0.64898I 0
u = 1.197920 0.212460I
a = 0.1235270 0.0251718I
b = 0.208678 + 0.717859I
2.51889 0.64898I 0
u = 0.742980
a = 4.08088
b = 0.756924
6.40671 22.8380
u = 0.678225 + 0.259653I
a = 0.219400 0.219932I
b = 0.735304 + 0.665653I
0.98837 7.05447I 10.8678 + 11.9178I
u = 0.678225 0.259653I
a = 0.219400 + 0.219932I
b = 0.735304 0.665653I
0.98837 + 7.05447I 10.8678 11.9178I
u = 1.185680 + 0.489419I
a = 0.0714715 + 0.0415507I
b = 0.018026 + 0.520754I
1.02907 5.96168I 0
u = 1.185680 0.489419I
a = 0.0714715 0.0415507I
b = 0.018026 0.520754I
1.02907 + 5.96168I 0
u = 0.661772 + 0.025420I
a = 0.573044 + 0.203692I
b = 0.601130 0.866198I
3.01505 2.93991I 8.02854 + 4.94099I
u = 0.661772 0.025420I
a = 0.573044 0.203692I
b = 0.601130 + 0.866198I
3.01505 + 2.93991I 8.02854 4.94099I
u = 0.608562 + 0.052862I
a = 1.204570 0.413046I
b = 0.295631 + 0.903933I
0.61020 + 1.37415I 10.26914 1.41740I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.608562 0.052862I
a = 1.204570 + 0.413046I
b = 0.295631 0.903933I
0.61020 1.37415I 10.26914 + 1.41740I
u = 0.603802
a = 0.298164
b = 1.06305
5.57235 20.0660
u = 0.032656 + 0.593010I
a = 0.36952 1.62271I
b = 0.996072 0.539949I
0.524938 0.113527I 8.64384 + 0.42173I
u = 0.032656 0.593010I
a = 0.36952 + 1.62271I
b = 0.996072 + 0.539949I
0.524938 + 0.113527I 8.64384 0.42173I
u = 0.403944 + 0.310632I
a = 7.08832 3.53754I
b = 1.05119 1.20630I
0.279878 + 0.575640I 9.6300 + 22.9731I
u = 0.403944 0.310632I
a = 7.08832 + 3.53754I
b = 1.05119 + 1.20630I
0.279878 0.575640I 9.6300 22.9731I
u = 1.63347 + 0.20317I
a = 1.33849 + 0.48910I
b = 2.46513 0.73973I
6.81089 + 3.11557I 0
u = 1.63347 0.20317I
a = 1.33849 0.48910I
b = 2.46513 + 0.73973I
6.81089 3.11557I 0
u = 1.61892 + 0.31042I
a = 1.45018 0.02409I
b = 2.18977 1.46329I
6.62010 3.75962I 0
u = 1.61892 0.31042I
a = 1.45018 + 0.02409I
b = 2.18977 + 1.46329I
6.62010 + 3.75962I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60931 + 0.54791I
a = 1.042880 0.658926I
b = 2.04032 + 0.38768I
13.6500 + 7.8231I 0
u = 1.60931 0.54791I
a = 1.042880 + 0.658926I
b = 2.04032 0.38768I
13.6500 7.8231I 0
u = 1.70298 + 0.07577I
a = 1.201980 + 0.256516I
b = 1.81377 1.00382I
14.7382 0.7846I 0
u = 1.70298 0.07577I
a = 1.201980 0.256516I
b = 1.81377 + 1.00382I
14.7382 + 0.7846I 0
u = 1.67977 + 0.44939I
a = 0.0708644 0.1108210I
b = 0.179650 1.147460I
8.63174 7.01563I 0
u = 1.67977 0.44939I
a = 0.0708644 + 0.1108210I
b = 0.179650 + 1.147460I
8.63174 + 7.01563I 0
u = 1.64583 + 0.58571I
a = 1.39373 + 0.38788I
b = 2.58601 + 1.40311I
6.05959 10.09710I 0
u = 1.64583 0.58571I
a = 1.39373 0.38788I
b = 2.58601 1.40311I
6.05959 + 10.09710I 0
u = 1.75625 + 0.06042I
a = 0.147310 + 0.027996I
b = 0.59079 1.50355I
9.30042 + 0.19617I 0
u = 1.75625 0.06042I
a = 0.147310 0.027996I
b = 0.59079 + 1.50355I
9.30042 0.19617I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.77632 + 0.13695I
a = 1.402470 + 0.047674I
b = 2.98413 0.73221I
7.28875 + 2.86108I 0
u = 1.77632 0.13695I
a = 1.402470 0.047674I
b = 2.98413 + 0.73221I
7.28875 2.86108I 0
u = 0.164240
a = 2.46011
b = 0.653644
0.823260 12.0980
u = 0.155157
a = 45.9491
b = 0.488931
0.760272 181.970
u = 1.72375 + 0.82810I
a = 1.145390 0.563607I
b = 2.67815 1.22216I
13.0011 15.0944I 0
u = 1.72375 0.82810I
a = 1.145390 + 0.563607I
b = 2.67815 + 1.22216I
13.0011 + 15.0944I 0
u = 1.62576 + 1.11014I
a = 0.700530 0.381882I
b = 0.99337 2.09354I
3.67025 + 2.14792I 0
u = 1.62576 1.11014I
a = 0.700530 + 0.381882I
b = 0.99337 + 2.09354I
3.67025 2.14792I 0
u = 0.38941 + 1.93312I
a = 0.392879 + 0.204474I
b = 2.57270 + 1.01210I
7.15465 + 5.75608I 0
u = 0.38941 1.93312I
a = 0.392879 0.204474I
b = 2.57270 1.01210I
7.15465 5.75608I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.10305 + 0.45567I
a = 1.071810 + 0.220002I
b = 3.29768 + 0.55847I
15.0358 + 7.1240I 0
u = 2.10305 0.45567I
a = 1.071810 0.220002I
b = 3.29768 0.55847I
15.0358 7.1240I 0
10
II. I
u
2
=
h−u
5
+2u
3
+u
2
+b2u1, u
5
2u
4
+u
3
+3u
2
+a2, u
6
+u
5
u
4
2u
3
+u+1i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
u
5
+ 2u
4
u
3
3u
2
+ 2
u
5
2u
3
u
2
+ 2u + 1
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
5
+ 2u
4
u
3
3u
2
+ 2
u
5
2u
3
u
2
+ 2u + 1
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
u
2
1
u
4
a
1
=
u
2
1
u
2
a
4
=
u
u
a
10
=
u
5
+ 2u
4
u
3
4u
2
+ 3
u
5
2u
3
2u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
7u
4
+ 4u
3
+ 11u
2
+ 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
2
, c
6
u
6
+ u
5
u
4
2u
3
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
7
, c
11
u
6
c
9
, c
10
(u + 1)
6
c
12
(u 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
2
, c
3
, c
4
c
6
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
7
, c
11
y
6
c
9
, c
10
, c
12
(y 1)
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.344968 + 0.764807I
b = 0.769407 0.497010I
3.53554 + 0.92430I 13.12292 1.33143I
u = 1.002190 0.295542I
a = 0.344968 0.764807I
b = 0.769407 + 0.497010I
3.53554 0.92430I 13.12292 + 1.33143I
u = 0.428243 + 0.664531I
a = 1.68613 + 1.92635I
b = 0.66103 + 1.45708I
0.245672 + 0.924305I 5.17126 7.13914I
u = 0.428243 0.664531I
a = 1.68613 1.92635I
b = 0.66103 1.45708I
0.245672 0.924305I 5.17126 + 7.13914I
u = 1.073950 + 0.558752I
a = 0.158836 0.437639I
b = 0.391622 + 0.558752I
1.64493 5.69302I 11.70582 + 2.69056I
u = 1.073950 0.558752I
a = 0.158836 + 0.437639I
b = 0.391622 0.558752I
1.64493 + 5.69302I 11.70582 2.69056I
14
III. I
v
1
= ha, 435v
7
+ 1730v
6
+ · · · + 287b 1024, v
8
4v
7
+ · · · + 5v + 1i
(i) Arc colorings
a
3
=
v
0
a
6
=
1
0
a
7
=
1
0
a
11
=
0
1.51568v
7
6.02787v
6
+ ··· + 15.0453v + 3.56794
a
8
=
1
1.95470v
7
8.80836v
6
+ ··· + 14.3136v + 3.47038
a
9
=
1.95470v
7
8.80836v
6
+ ··· + 14.3136v + 4.47038
1.95470v
7
8.80836v
6
+ ··· + 14.3136v + 3.47038
a
12
=
1.51568v
7
6.02787v
6
+ ··· + 15.0453v + 3.56794
2.67247v
7
12.3066v
6
+ ··· + 11.4983v + 1.24739
a
5
=
0.954704v
7
4.80836v
6
+ ··· + 3.31359v 0.529617
v
7
+ 4v
6
+ 22v
5
+ 34v
4
+ 17v
3
6v
2
11v 5
a
2
=
0.954704v
7
+ 4.80836v
6
+ ··· 2.31359v + 0.529617
v
7
4v
6
22v
5
34v
4
17v
3
+ 6v
2
+ 11v + 5
a
1
=
0.954704v
7
+ 4.80836v
6
+ ··· 3.31359v + 0.529617
v
7
4v
6
22v
5
34v
4
17v
3
+ 6v
2
+ 11v + 5
a
4
=
v
0
a
10
=
0.560976v
7
+ 2.21951v
6
+ ··· 5.73171v 0.0975610
0.0313589v
7
+ 1.05575v
6
+ ··· + 8.90941v + 4.86411
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1471
287
v
7
+
6091
287
v
6
+
31994
287
v
5
+
42984
287
v
4
+
10893
287
v
3
16572
287
v
2
10723
287
v
1304
287
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
7
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
8
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
9
, c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
8
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
11
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
9
, c
10
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.637416 + 0.344390I
a = 0
b = 0.855237 0.665892I
3.80435 2.57849I 1.05479 + 2.41352I
v = 0.637416 0.344390I
a = 0
b = 0.855237 + 0.665892I
3.80435 + 2.57849I 1.05479 2.41352I
v = 0.687555
a = 0
b = 1.09818
4.85780 7.27590
v = 1.194470 + 0.635084I
a = 0
b = 0.570868 0.730671I
0.604279 1.131230I 2.08624 + 1.57496I
v = 1.194470 0.635084I
a = 0
b = 0.570868 + 0.730671I
0.604279 + 1.131230I 2.08624 1.57496I
v = 0.286111 + 0.344558I
a = 0
b = 1.031810 + 0.655470I
0.73474 6.44354I 6.38151 + 0.59069I
v = 0.286111 0.344558I
a = 0
b = 1.031810 0.655470I
0.73474 + 6.44354I 6.38151 0.59069I
v = 7.54843
a = 0
b = 0.603304
0.799899 49.1020
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
52
+ 14u
51
+ ··· + 1402u + 1)
c
2
((u 1)
8
)(u
6
+ u
5
+ ··· + u + 1)(u
52
10u
51
+ ··· 42u + 1)
c
3
u
8
(u
6
u
5
+ ··· u + 1)(u
52
+ 6u
51
+ ··· 384u + 256)
c
4
((u + 1)
8
)(u
6
u
5
+ ··· u + 1)(u
52
10u
51
+ ··· 42u + 1)
c
5
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
52
+ 3u
51
+ ··· + 2u + 1)
c
6
u
8
(u
6
+ u
5
+ ··· + u + 1)(u
52
+ 6u
51
+ ··· 384u + 256)
c
7
u
6
(u
8
+ u
7
+ ··· 2u 1)(u
52
2u
51
+ ··· 192u + 64)
c
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
52
+ 3u
51
+ ··· + 2u + 1)
c
9
, c
10
((u + 1)
6
)(u
8
u
7
+ ··· 2u 1)(u
52
+ 8u
51
+ ··· + 5u + 1)
c
11
u
6
(u
8
u
7
+ ··· + 2u 1)(u
52
2u
51
+ ··· 192u + 64)
c
12
((u 1)
6
)(u
8
+ u
7
+ ··· + 2u 1)(u
52
+ 8u
51
+ ··· + 5u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
52
+ 58y
51
+ ··· 1883250y + 1)
c
2
, c
4
(y 1)
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
52
14y
51
+ ··· 1402y + 1)
c
3
, c
6
y
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
52
54y
51
+ ··· 6144000y + 65536)
c
5
, c
8
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
52
+ 11y
51
+ ··· 2y + 1)
c
7
, c
11
y
6
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
52
42y
51
+ ··· + 4096y + 4096)
c
9
, c
10
, c
12
(y 1)
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
52
56y
51
+ ··· 11y + 1)
20