12n
0091
(K12n
0091
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 8 4 11 5 12 7 9 10
Solving Sequence
7,11 4,8
3 6 5 9 12 2 1 10
c
7
c
3
c
6
c
5
c
8
c
11
c
2
c
1
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h9.64531 × 10
104
u
44
4.88193 × 10
105
u
43
+ ··· + 3.96010 × 10
106
b + 2.98159 × 10
106
,
2.00715 × 10
105
u
44
1.57876 × 10
106
u
43
+ ··· + 3.96010 × 10
106
a + 1.15179 × 10
108
,
u
45
5u
44
+ ··· 4u + 4i
I
u
2
= hb, 6u
7
2u
6
8u
5
+ 7u
4
+ 11u
3
5u
2
+ a 4u + 9, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
I
u
3
= h−7a
2
u + 4a
2
16au + 5b + 7a 5u, a
3
+ a
2
u + 4a
2
+ 5au + 9a + 11u + 18, u
2
+ u 1i
I
v
1
= ha, 3b v 5, v
2
+ 7v + 1i
* 4 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9.65 × 10
104
u
44
4.88 × 10
105
u
43
+ · · · + 3.96 × 10
106
b + 2.98 ×
10
106
, 2.01 × 10
105
u
44
1.58 × 10
106
u
43
+ · · · + 3.96 × 10
106
a + 1.15 ×
10
108
, u
45
5u
44
+ · · · 4u + 4i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
0.0506843u
44
+ 0.398668u
43
+ ··· + 188.945u 29.0849
0.0243562u
44
+ 0.123278u
43
+ ··· + 0.647937u 0.752907
a
8
=
1
u
2
a
3
=
0.0263281u
44
+ 0.521945u
43
+ ··· + 189.593u 29.8378
0.0243562u
44
+ 0.123278u
43
+ ··· + 0.647937u 0.752907
a
6
=
0.578672u
44
+ 2.91168u
43
+ ··· + 115.832u 12.7171
0.0122192u
44
+ 0.0421916u
43
+ ··· 0.844080u 0.0205202
a
5
=
0.523728u
44
+ 2.65934u
43
+ ··· + 112.600u 12.6643
0.0107063u
44
0.0589316u
43
+ ··· 0.974335u 0.110043
a
9
=
0.200885u
44
+ 0.997869u
43
+ ··· + 26.7328u 3.10717
0.0408682u
44
+ 0.220014u
43
+ ··· + 3.28466u 0.639926
a
12
=
0.160017u
44
0.777856u
43
+ ··· 23.4481u + 2.46724
0.0408682u
44
+ 0.220014u
43
+ ··· + 3.28466u 0.639926
a
2
=
0.371834u
44
1.26324u
43
+ ··· + 112.115u 20.4632
0.0107063u
44
0.0589316u
43
+ ··· 0.974335u 0.110043
a
1
=
0.176529u
44
+ 0.860569u
43
+ ··· + 24.2254u 2.44102
0.0243554u
44
0.137300u
43
+ ··· 2.50734u + 0.666147
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13.4312u
44
+ 61.0887u
43
+ ··· + 779.429u 36.2514
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
45
+ 10u
44
+ ··· + 930u + 1
c
2
, c
4
u
45
12u
44
+ ··· 26u 1
c
3
, c
6
u
45
4u
44
+ ··· 640u 256
c
5
, c
8
u
45
3u
44
+ ··· + 32u 64
c
7
, c
10
u
45
+ 5u
44
+ ··· 4u 4
c
9
, c
11
, c
12
u
45
7u
44
+ ··· + 12u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
45
+ 62y
44
+ ··· + 852778y 1
c
2
, c
4
y
45
10y
44
+ ··· + 930y 1
c
3
, c
6
y
45
+ 54y
44
+ ··· + 4571136y 65536
c
5
, c
8
y
45
+ 33y
44
+ ··· + 234496y 4096
c
7
, c
10
y
45
+ 3y
44
+ ··· + 1256y 16
c
9
, c
11
, c
12
y
45
31y
44
+ ··· 142y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.915118 + 0.408726I
a = 0.325649 + 0.527673I
b = 0.009810 + 0.890868I
1.38833 + 3.58772I 7.79003 7.62926I
u = 0.915118 0.408726I
a = 0.325649 0.527673I
b = 0.009810 0.890868I
1.38833 3.58772I 7.79003 + 7.62926I
u = 0.365105 + 0.956372I
a = 0.783884 0.698913I
b = 0.189316 + 0.701955I
1.23770 + 1.72442I 9.34080 2.25647I
u = 0.365105 0.956372I
a = 0.783884 + 0.698913I
b = 0.189316 0.701955I
1.23770 1.72442I 9.34080 + 2.25647I
u = 0.024171 + 0.935812I
a = 0.223335 + 0.379731I
b = 1.200670 0.692757I
0.018874 0.450301I 9.70033 + 2.11767I
u = 0.024171 0.935812I
a = 0.223335 0.379731I
b = 1.200670 + 0.692757I
0.018874 + 0.450301I 9.70033 2.11767I
u = 0.966319 + 0.460827I
a = 0.530555 0.776754I
b = 0.560995 0.542777I
0.360727 + 0.771902I 10.39463 1.07835I
u = 0.966319 0.460827I
a = 0.530555 + 0.776754I
b = 0.560995 + 0.542777I
0.360727 0.771902I 10.39463 + 1.07835I
u = 0.377077 + 1.004800I
a = 0.126523 1.194160I
b = 0.51946 + 1.36700I
0.90351 3.78658I 11.20030 + 4.56976I
u = 0.377077 1.004800I
a = 0.126523 + 1.194160I
b = 0.51946 1.36700I
0.90351 + 3.78658I 11.20030 4.56976I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.087000 + 1.121450I
a = 0.024928 + 1.412560I
b = 0.00967 1.90333I
5.86522 1.45260I 9.17004 + 0.I
u = 0.087000 1.121450I
a = 0.024928 1.412560I
b = 0.00967 + 1.90333I
5.86522 + 1.45260I 9.17004 + 0.I
u = 0.401049 + 1.080630I
a = 0.302970 1.307030I
b = 0.62624 + 1.82528I
4.81861 + 6.30906I 12.00000 5.34980I
u = 0.401049 1.080630I
a = 0.302970 + 1.307030I
b = 0.62624 1.82528I
4.81861 6.30906I 12.00000 + 5.34980I
u = 1.068610 + 0.569431I
a = 0.186178 0.007842I
b = 0.179271 0.620523I
3.67456 6.89597I 0. + 11.15950I
u = 1.068610 0.569431I
a = 0.186178 + 0.007842I
b = 0.179271 + 0.620523I
3.67456 + 6.89597I 0. 11.15950I
u = 0.482744 + 1.160890I
a = 0.263029 + 0.628730I
b = 1.16026 0.81675I
4.19700 + 1.34910I 0
u = 0.482744 1.160890I
a = 0.263029 0.628730I
b = 1.16026 + 0.81675I
4.19700 1.34910I 0
u = 0.659876 + 1.186580I
a = 0.013007 0.348897I
b = 1.58964 + 0.23048I
1.89448 6.79376I 0
u = 0.659876 1.186580I
a = 0.013007 + 0.348897I
b = 1.58964 0.23048I
1.89448 + 6.79376I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617649
a = 11.3061
b = 0.157357
2.53079 190.200
u = 0.583689
a = 0.731156
b = 0.181306
0.821501 11.8740
u = 0.564571 + 0.051345I
a = 0.43377 4.24949I
b = 0.197314 1.345870I
1.89233 2.90725I 43.5907 + 10.5695I
u = 0.564571 0.051345I
a = 0.43377 + 4.24949I
b = 0.197314 + 1.345870I
1.89233 + 2.90725I 43.5907 10.5695I
u = 1.42658 + 0.31702I
a = 0.339255 + 0.288013I
b = 0.203375 1.016320I
6.72932 + 1.63796I 0
u = 1.42658 0.31702I
a = 0.339255 0.288013I
b = 0.203375 + 1.016320I
6.72932 1.63796I 0
u = 0.451637 + 0.254040I
a = 7.24829 + 2.01469I
b = 0.377187 0.281972I
2.91440 + 0.52040I 28.2057 + 17.3785I
u = 0.451637 0.254040I
a = 7.24829 2.01469I
b = 0.377187 + 0.281972I
2.91440 0.52040I 28.2057 17.3785I
u = 1.59963
a = 2.25479
b = 0.531548
10.0523 0
u = 0.311546
a = 0.410463
b = 1.54859
10.6185 59.2780
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.249076 + 0.150044I
a = 1.39946 0.69287I
b = 0.633876 + 0.017196I
0.943845 + 0.013085I 9.49805 + 0.60913I
u = 0.249076 0.150044I
a = 1.39946 + 0.69287I
b = 0.633876 0.017196I
0.943845 0.013085I 9.49805 0.60913I
u = 1.23028 + 1.20187I
a = 0.763456 1.051240I
b = 0.78255 + 1.69623I
7.5666 15.2974I 0
u = 1.23028 1.20187I
a = 0.763456 + 1.051240I
b = 0.78255 1.69623I
7.5666 + 15.2974I 0
u = 1.04398 + 1.38545I
a = 0.513899 + 1.027650I
b = 0.35731 1.99808I
9.42541 7.53688I 0
u = 1.04398 1.38545I
a = 0.513899 1.027650I
b = 0.35731 + 1.99808I
9.42541 + 7.53688I 0
u = 1.34253 + 1.18884I
a = 0.783841 + 0.869513I
b = 0.59331 1.89133I
12.3107 + 8.8025I 0
u = 1.34253 1.18884I
a = 0.783841 0.869513I
b = 0.59331 + 1.89133I
12.3107 8.8025I 0
u = 1.11393 + 1.42928I
a = 0.487625 0.860747I
b = 0.04895 + 2.08421I
13.18790 + 0.68473I 0
u = 1.11393 1.42928I
a = 0.487625 + 0.860747I
b = 0.04895 2.08421I
13.18790 0.68473I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.20457 + 1.40795I
a = 0.398410 + 0.717324I
b = 0.40058 1.86705I
7.92332 + 5.93163I 0
u = 1.20457 1.40795I
a = 0.398410 0.717324I
b = 0.40058 + 1.86705I
7.92332 5.93163I 0
u = 0.146565
a = 50.3293
b = 0.601818
2.67208 212.850
u = 1.44703 + 1.16617I
a = 0.701543 0.689210I
b = 0.24206 + 1.91261I
8.18611 1.85592I 0
u = 1.44703 1.16617I
a = 0.701543 + 0.689210I
b = 0.24206 1.91261I
8.18611 + 1.85592I 0
9
II. I
u
2
= hb, 6u
7
2u
6
+ · · · + a + 9, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 5u
2
+ 4u 9
0
a
8
=
1
u
2
a
3
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 5u
2
+ 4u 9
0
a
6
=
1
0
a
5
=
u
2
+ 1
u
4
a
9
=
u
4
u
2
+ 1
u
6
+ u
2
a
12
=
u
6
u
4
+ 2u
2
1
u
6
+ u
2
a
2
=
6u
7
+ 2u
6
+ 8u
5
7u
4
11u
3
+ 6u
2
+ 4u 10
u
4
a
1
=
u
2
1
u
4
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 36u
7
15u
6
42u
5
+ 45u
4
+ 62u
3
34u
2
20u + 45
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
7
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
8
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
9
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
10
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
11
, c
12
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
8
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
9
, c
11
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 1.194470 0.635084I
b = 0
2.68559 + 1.13123I 14.0862 1.5750I
u = 0.570868 0.730671I
a = 1.194470 + 0.635084I
b = 0
2.68559 1.13123I 14.0862 + 1.5750I
u = 0.855237 + 0.665892I
a = 0.637416 0.344390I
b = 0
0.51448 + 2.57849I 10.94521 2.41352I
u = 0.855237 0.665892I
a = 0.637416 + 0.344390I
b = 0
0.51448 2.57849I 10.94521 + 2.41352I
u = 1.09818
a = 0.687555
b = 0
8.14766 19.2760
u = 1.031810 + 0.655470I
a = 0.286111 + 0.344558I
b = 0
4.02461 6.44354I 18.3815 + 0.5907I
u = 1.031810 0.655470I
a = 0.286111 0.344558I
b = 0
4.02461 + 6.44354I 18.3815 0.5907I
u = 0.603304
a = 7.54843
b = 0
2.48997 37.1020
13
III. I
u
3
=
h−7a
2
u+4a
2
16au+5b+7a5u, a
3
+a
2
u+4a
2
+5au+9a+11u+18, u
2
+u1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
a
7
5
a
2
u +
16
5
au + ···
4
5
a
2
7
5
a
a
8
=
1
u + 1
a
3
=
7
5
a
2
u +
16
5
au + ···
4
5
a
2
2
5
a
7
5
a
2
u +
16
5
au + ···
4
5
a
2
7
5
a
a
6
=
1
5
a
2
u +
3
5
au + ···
1
5
a + 2
4
5
a
2
u
3
5
a
2
+
7
5
au
4
5
a + 1
a
5
=
1
5
a
2
u +
3
5
au + ···
1
5
a + 2
4
5
a
2
u
3
5
a
2
+
7
5
au
4
5
a + 1
a
9
=
1
u + 1
a
12
=
u
u + 1
a
2
=
a
2
u a
2
+ 2au a + u + 1
4
5
a
2
u
3
5
a
2
+
7
5
au
4
5
a + 1
a
1
=
1
0
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
62
5
a
2
u +
34
5
a
2
56
5
au +
47
5
a + 2u 3
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.68565 + 2.67728I
b = 0.215080 + 1.307140I
2.03717 + 2.82812I 2.32130 + 9.80499I
u = 0.618034
a = 0.68565 2.67728I
b = 0.215080 1.307140I
2.03717 2.82812I 2.32130 9.80499I
u = 0.618034
a = 3.24674
b = 0.569840
2.10041 18.9130
u = 1.61803
a = 0.204714 + 0.245578I
b = 0.215080 1.307140I
5.85852 2.82812I 12.36452 + 4.05775I
u = 1.61803
a = 0.204714 0.245578I
b = 0.215080 + 1.307140I
5.85852 + 2.82812I 12.36452 4.05775I
u = 1.61803
a = 1.97254
b = 0.569840
9.99610 44.0000
17
IV. I
v
1
= ha, 3b v 5, v
2
+ 7v + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
v
0
a
4
=
0
1
3
v +
5
3
a
8
=
1
0
a
3
=
1
3
v +
5
3
1
3
v +
5
3
a
6
=
1
1
3
v
8
3
a
5
=
1
3
v
5
3
1
3
v
8
3
a
9
=
2
3
v +
16
3
v + 7
a
12
=
1
3
v
16
3
v 7
a
2
=
1
1
3
v
8
3
a
1
=
2
3
v
16
3
v 7
a
10
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 29
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
7
, c
10
u
2
c
8
u
2
+ 3u + 1
c
9
(u 1)
2
c
11
, c
12
(u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
7
, c
10
y
2
c
9
, c
11
, c
12
(y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.145898
a = 0
b = 1.61803
10.5276 29.0000
v = 6.85410
a = 0
b = 0.618034
2.63189 29.0000
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
2
3u + 1)(u
3
u
2
+ 2u 1)
2
(u
45
+ 10u
44
+ ··· + 930u + 1)
c
2
((u 1)
8
)(u
2
+ u 1)(u
3
+ u
2
1)
2
(u
45
12u
44
+ ··· 26u 1)
c
3
u
8
(u
2
+ u 1)(u
3
u
2
+ 2u 1)
2
(u
45
4u
44
+ ··· 640u 256)
c
4
((u + 1)
8
)(u
2
u 1)(u
3
u
2
+ 1)
2
(u
45
12u
44
+ ··· 26u 1)
c
5
u
6
(u
2
3u + 1)(u
8
3u
7
+ ··· 4u + 1)
· (u
45
3u
44
+ ··· + 32u 64)
c
6
u
8
(u
2
u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
45
4u
44
+ ··· 640u 256)
c
7
u
2
(u
2
+ u 1)
3
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
45
+ 5u
44
+ ··· 4u 4)
c
8
u
6
(u
2
+ 3u + 1)(u
8
+ 3u
7
+ ··· + 4u + 1)
· (u
45
3u
44
+ ··· + 32u 64)
c
9
(u 1)
2
(u
2
+ u 1)
3
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
45
7u
44
+ ··· + 12u + 1)
c
10
u
2
(u
2
u 1)
3
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
45
+ 5u
44
+ ··· 4u 4)
c
11
, c
12
(u + 1)
2
(u
2
u 1)
3
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
45
7u
44
+ ··· + 12u + 1)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
2
7y + 1)(y
3
+ 3y
2
+ 2y 1)
2
· (y
45
+ 62y
44
+ ··· + 852778y 1)
c
2
, c
4
((y 1)
8
)(y
2
3y + 1)(y
3
y
2
+ 2y 1)
2
(y
45
10y
44
+ ··· + 930y 1)
c
3
, c
6
y
8
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)
2
· (y
45
+ 54y
44
+ ··· + 4571136y 65536)
c
5
, c
8
y
6
(y
2
7y + 1)(y
8
+ 5y
7
+ ··· 4y + 1)
· (y
45
+ 33y
44
+ ··· + 234496y 4096)
c
7
, c
10
y
2
(y
2
3y + 1)
3
(y
8
3y
7
+ ··· 4y + 1)
· (y
45
+ 3y
44
+ ··· + 1256y 16)
c
9
, c
11
, c
12
(y 1)
2
(y
2
3y + 1)
3
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
45
31y
44
+ ··· 142y 1)
23