12n
0092
(K12n
0092
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 8 4 11 5 12 1 8 10
Solving Sequence
7,11
8
4,12
3 6 5 9 2 1 10
c
7
c
11
c
3
c
6
c
5
c
8
c
2
c
1
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.63090 × 10
169
u
64
1.19407 × 10
170
u
63
+ ··· + 5.11342 × 10
169
b 2.60080 × 10
170
,
1.33678 × 10
170
u
64
5.86621 × 10
170
u
63
+ ··· + 1.27836 × 10
169
a 8.83930 × 10
170
,
u
65
+ 5u
64
+ ··· + 4u + 4i
I
u
2
= h13a
2
u + 10a
2
+ 22au + 61b + 31a + 11u + 46, a
3
+ a
2
u 7au + 13a u + 4, u
2
u 1i
I
u
3
= hb, 5u
2
+ a + 2u + 9, u
3
+ u
2
+ 2u + 1i
I
v
1
= ha, 3b + v 5, v
2
7v + 1i
* 4 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.63 × 10
169
u
64
1.19 × 10
170
u
63
+ · · · + 5.11 × 10
169
b 2.60 ×
10
170
, 1.34 × 10
170
u
64
5.87 × 10
170
u
63
+ · · · + 1.28 × 10
169
a 8.84 ×
10
170
, u
65
+ 5u
64
+ · · · + 4u + 4i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
10.4570u
64
+ 45.8887u
63
+ ··· 20.3543u + 69.1458
0.514509u
64
+ 2.33517u
63
+ ··· 12.7222u + 5.08623
a
12
=
u
u
3
+ u
a
3
=
10.9715u
64
+ 48.2239u
63
+ ··· 33.0765u + 74.2321
0.514509u
64
+ 2.33517u
63
+ ··· 12.7222u + 5.08623
a
6
=
2.56076u
64
11.3025u
63
+ ··· + 22.7562u 15.2103
0.519422u
64
2.45761u
63
+ ··· + 16.9006u 7.52354
a
5
=
3.92828u
64
17.5296u
63
+ ··· + 43.8945u 28.7392
0.226329u
64
1.14246u
63
+ ··· + 13.8722u 5.08179
a
9
=
0.467988u
64
1.95761u
63
+ ··· 13.3003u + 0.571683
1.21392u
64
+ 5.72728u
63
+ ··· 42.4563u + 17.1644
a
2
=
11.9804u
64
+ 52.6553u
63
+ ··· 42.2932u + 79.5227
0.226329u
64
1.14246u
63
+ ··· + 13.8722u 5.08179
a
1
=
1.45833u
64
6.68429u
63
+ ··· + 28.8135u 15.0633
0.990343u
64
4.72668u
63
+ ··· + 42.1137u 15.6350
a
10
=
0.205715u
64
0.764176u
63
+ ··· 16.7041u + 3.00115
1.42293u
64
+ 6.67656u
63
+ ··· 45.2828u + 19.1221
(ii) Obstruction class = 1
(iii) Cusp Shapes = 250.136u
64
1099.53u
63
+ ··· + 889.233u 1633.12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
65
+ 35u
64
+ ··· + 4379u + 1
c
2
, c
4
u
65
7u
64
+ ··· 61u 1
c
3
, c
6
u
65
4u
64
+ ··· 4u 8
c
5
, c
8
u
65
3u
64
+ ··· + 224u 64
c
7
, c
11
u
65
5u
64
+ ··· + 4u 4
c
9
, c
10
, c
12
u
65
+ 7u
64
+ ··· + 88u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
65
3y
64
+ ··· + 19078099y 1
c
2
, c
4
y
65
35y
64
+ ··· + 4379y 1
c
3
, c
6
y
65
+ 24y
64
+ ··· + 7056y 64
c
5
, c
8
y
65
47y
64
+ ··· + 283648y 4096
c
7
, c
11
y
65
21y
64
+ ··· + 1448y 16
c
9
, c
10
, c
12
y
65
55y
64
+ ··· + 6134y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.852107 + 0.536554I
a = 0.312816 0.088889I
b = 1.40349 + 0.30161I
1.38895 2.95818I 0
u = 0.852107 0.536554I
a = 0.312816 + 0.088889I
b = 1.40349 0.30161I
1.38895 + 2.95818I 0
u = 0.948009 + 0.367228I
a = 0.850963 0.753331I
b = 0.153663 + 0.857675I
2.10912 0.34030I 0
u = 0.948009 0.367228I
a = 0.850963 + 0.753331I
b = 0.153663 0.857675I
2.10912 + 0.34030I 0
u = 1.024770 + 0.135153I
a = 0.04125 + 1.56220I
b = 0.13124 1.75548I
9.17254 3.64107I 0
u = 1.024770 0.135153I
a = 0.04125 1.56220I
b = 0.13124 + 1.75548I
9.17254 + 3.64107I 0
u = 0.691259 + 0.784338I
a = 0.662548 + 0.346420I
b = 0.470514 0.941528I
0.56978 4.38703I 0
u = 0.691259 0.784338I
a = 0.662548 0.346420I
b = 0.470514 + 0.941528I
0.56978 + 4.38703I 0
u = 0.916883 + 0.120007I
a = 0.389774 + 0.653279I
b = 0.947907 0.877633I
3.47356 + 1.55230I 0
u = 0.916883 0.120007I
a = 0.389774 0.653279I
b = 0.947907 + 0.877633I
3.47356 1.55230I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.568857 + 0.725937I
a = 0.442387 + 0.229414I
b = 0.895487 0.532333I
2.18618 0.21906I 0
u = 0.568857 0.725937I
a = 0.442387 0.229414I
b = 0.895487 + 0.532333I
2.18618 + 0.21906I 0
u = 0.842958 + 0.701034I
a = 0.402908 + 1.148860I
b = 0.613031 0.666960I
1.58736 + 0.20570I 0
u = 0.842958 0.701034I
a = 0.402908 1.148860I
b = 0.613031 + 0.666960I
1.58736 0.20570I 0
u = 0.322386 + 0.842732I
a = 0.573249 + 1.009110I
b = 0.004484 + 1.102400I
4.65051 + 1.43055I 0
u = 0.322386 0.842732I
a = 0.573249 1.009110I
b = 0.004484 1.102400I
4.65051 1.43055I 0
u = 0.890471 + 0.716800I
a = 0.459802 0.793448I
b = 0.820727 + 1.097090I
4.31441 + 8.34885I 0
u = 0.890471 0.716800I
a = 0.459802 + 0.793448I
b = 0.820727 1.097090I
4.31441 8.34885I 0
u = 0.807936 + 0.810042I
a = 0.59554 + 1.80173I
b = 0.635097 0.948580I
5.30684 + 1.54275I 0
u = 0.807936 0.810042I
a = 0.59554 1.80173I
b = 0.635097 + 0.948580I
5.30684 1.54275I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.093900 + 0.380450I
a = 0.431231 + 0.794777I
b = 0.769105 1.004900I
7.57890 + 3.09040I 0
u = 1.093900 0.380450I
a = 0.431231 0.794777I
b = 0.769105 + 1.004900I
7.57890 3.09040I 0
u = 1.123750 + 0.281723I
a = 0.31854 + 1.48804I
b = 0.360396 0.792963I
1.65110 0.40415I 0
u = 1.123750 0.281723I
a = 0.31854 1.48804I
b = 0.360396 + 0.792963I
1.65110 + 0.40415I 0
u = 0.916981 + 0.724426I
a = 0.35528 1.65844I
b = 0.449506 + 1.288610I
1.34521 5.69764I 0
u = 0.916981 0.724426I
a = 0.35528 + 1.65844I
b = 0.449506 1.288610I
1.34521 + 5.69764I 0
u = 0.716927 + 0.933576I
a = 0.95858 1.67087I
b = 0.830238 + 0.572871I
1.31032 + 2.58838I 0
u = 0.716927 0.933576I
a = 0.95858 + 1.67087I
b = 0.830238 0.572871I
1.31032 2.58838I 0
u = 0.640640 + 0.505760I
a = 2.04088 0.00556I
b = 0.281677 1.140920I
4.03132 3.47720I 8.54192 + 0.I
u = 0.640640 0.505760I
a = 2.04088 + 0.00556I
b = 0.281677 + 1.140920I
4.03132 + 3.47720I 8.54192 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.963394 + 0.774365I
a = 0.309238 0.466323I
b = 1.011710 + 0.670256I
4.82760 + 4.40824I 0
u = 0.963394 0.774365I
a = 0.309238 + 0.466323I
b = 1.011710 0.670256I
4.82760 4.40824I 0
u = 0.516521 + 1.180440I
a = 0.443034 0.252752I
b = 0.511934 + 1.004960I
2.73256 + 3.28945I 0
u = 0.516521 1.180440I
a = 0.443034 + 0.252752I
b = 0.511934 1.004960I
2.73256 3.28945I 0
u = 1.040640 + 0.792804I
a = 0.269379 + 0.165081I
b = 1.29598 0.58611I
0.31021 8.92181I 0
u = 1.040640 0.792804I
a = 0.269379 0.165081I
b = 1.29598 + 0.58611I
0.31021 + 8.92181I 0
u = 1.133830 + 0.655680I
a = 0.23216 1.57884I
b = 0.680939 + 1.100720I
0.42473 + 5.58831I 0
u = 1.133830 0.655680I
a = 0.23216 + 1.57884I
b = 0.680939 1.100720I
0.42473 5.58831I 0
u = 0.481460 + 1.304030I
a = 0.160877 0.218086I
b = 0.650609 + 0.709593I
6.03312 3.48808I 0
u = 0.481460 1.304030I
a = 0.160877 + 0.218086I
b = 0.650609 0.709593I
6.03312 + 3.48808I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.605447 + 0.034461I
a = 0.36569 3.69530I
b = 0.185254 + 1.354450I
3.85230 + 2.93050I 14.9510 12.7631I
u = 0.605447 0.034461I
a = 0.36569 + 3.69530I
b = 0.185254 1.354450I
3.85230 2.93050I 14.9510 + 12.7631I
u = 0.596504
a = 11.6408
b = 0.144153
0.561787 200.700
u = 1.20386 + 0.80436I
a = 0.39858 + 1.41760I
b = 0.72823 1.36563I
4.86618 10.28160I 0
u = 1.20386 0.80436I
a = 0.39858 1.41760I
b = 0.72823 + 1.36563I
4.86618 + 10.28160I 0
u = 0.551957
a = 1.56151
b = 0.122994
1.12640 9.50900
u = 0.35331 + 1.40989I
a = 0.0507171 + 0.0998246I
b = 0.265762 0.457711I
4.60256 2.48429I 0
u = 0.35331 1.40989I
a = 0.0507171 0.0998246I
b = 0.265762 + 0.457711I
4.60256 + 2.48429I 0
u = 0.515646 + 0.173541I
a = 2.52072 + 0.01596I
b = 0.510707 + 0.338412I
1.000760 0.692383I 6.73751 0.40613I
u = 0.515646 0.173541I
a = 2.52072 0.01596I
b = 0.510707 0.338412I
1.000760 + 0.692383I 6.73751 + 0.40613I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.30779 + 0.82249I
a = 0.312309 + 1.360860I
b = 0.780596 1.112270I
3.39471 + 10.94230I 0
u = 1.30779 0.82249I
a = 0.312309 1.360860I
b = 0.780596 + 1.112270I
3.39471 10.94230I 0
u = 1.42808 + 0.65324I
a = 0.120606 1.218490I
b = 0.608224 + 0.971552I
0.66498 4.63908I 0
u = 1.42808 0.65324I
a = 0.120606 + 1.218490I
b = 0.608224 0.971552I
0.66498 + 4.63908I 0
u = 1.26142 + 0.95426I
a = 0.49685 1.33557I
b = 0.84089 + 1.26809I
1.9343 16.4466I 0
u = 1.26142 0.95426I
a = 0.49685 + 1.33557I
b = 0.84089 1.26809I
1.9343 + 16.4466I 0
u = 0.76428 + 1.39601I
a = 0.194634 + 0.365377I
b = 0.676063 1.067470I
0.19526 + 8.22606I 0
u = 0.76428 1.39601I
a = 0.194634 0.365377I
b = 0.676063 + 1.067470I
0.19526 8.22606I 0
u = 1.63520
a = 1.82265
b = 0.534695
7.71518 0
u = 0.284609
a = 0.440890
b = 1.67721
7.15457 47.4220
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.027450 + 0.277565I
a = 14.7216 + 8.1087I
b = 0.617886 + 0.064219I
0.646116 0.109642I 45.2047 + 8.8218I
u = 0.027450 0.277565I
a = 14.7216 8.1087I
b = 0.617886 0.064219I
0.646116 + 0.109642I 45.2047 8.8218I
u = 1.83739 + 0.12757I
a = 0.128738 + 1.010030I
b = 0.151006 1.055190I
11.02040 + 2.29381I 0
u = 1.83739 0.12757I
a = 0.128738 1.010030I
b = 0.151006 + 1.055190I
11.02040 2.29381I 0
u = 0.113052
a = 3.84398
b = 0.612202
1.00335 10.2290
11
II.
I
u
2
= h13a
2
u + 22au + · · · + 31a + 46, a
3
+ a
2
u 7au + 13a u + 4, u
2
u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u 1
a
4
=
a
0.213115a
2
u 0.360656au + ··· 0.508197a 0.754098
a
12
=
u
u 1
a
3
=
0.213115a
2
u 0.360656au + ··· + 0.491803a 0.754098
0.213115a
2
u 0.360656au + ··· 0.508197a 0.754098
a
6
=
0.0163934a
2
u + 0.0491803au + ··· + 0.114754a + 0.557377
0.262295a
2
u 0.213115au + ··· 0.163934a 0.0819672
a
5
=
0.0163934a
2
u + 0.0491803au + ··· + 0.114754a + 0.557377
0.262295a
2
u 0.213115au + ··· 0.163934a 0.0819672
a
9
=
1
u 1
a
2
=
0.278689a
2
u 0.163934au + ··· 0.0491803a 1.52459
0.262295a
2
u 0.213115au + ··· 0.163934a 0.0819672
a
1
=
1
0
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
476
61
a
2
u +
216
61
a
2
+
158
61
au +
23
61
a +
872
61
u +
591
61
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
, c
10
(u
2
u 1)
3
c
11
, c
12
(u
2
+ u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.263016
b = 0.569840
0.126494 1.08690
u = 0.618034
a = 0.44053 + 4.16700I
b = 0.215080 1.307140I
4.01109 2.82812I 22.3213 9.8050I
u = 0.618034
a = 0.44053 4.16700I
b = 0.215080 + 1.307140I
4.01109 + 2.82812I 22.3213 + 9.8050I
u = 1.61803
a = 0.040408 + 1.244150I
b = 0.215080 1.307140I
11.90680 2.82812I 7.63548 + 4.05775I
u = 1.61803
a = 0.040408 1.244150I
b = 0.215080 + 1.307140I
11.90680 + 2.82812I 7.63548 4.05775I
u = 1.61803
a = 1.53722
b = 0.569840
7.76919 64.0000
15
III. I
u
3
= hb, 5u
2
+ a + 2u + 9, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
5u
2
2u 9
0
a
12
=
u
u
2
+ 3u + 1
a
3
=
5u
2
2u 9
0
a
6
=
1
0
a
5
=
u
2
+ 1
u
2
u 1
a
9
=
u + 2
2u
2
+ 3u + 2
a
2
=
6u
2
2u 10
u
2
+ u + 1
a
1
=
u
2
1
u
2
+ u + 1
a
10
=
1
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 53u
2
+ 32u + 92
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
u
3
3u
2
+ 2u + 1
c
7
u
3
+ u
2
+ 2u + 1
c
8
u
3
+ 3u
2
+ 2u 1
c
9
, c
10
u
3
u
2
+ 1
c
11
u
3
u
2
+ 2u 1
c
12
u
3
+ u
2
1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
8
y
3
5y
2
+ 10y 1
c
7
, c
11
y
3
+ 3y
2
+ 2y 1
c
9
, c
10
, c
12
y
3
y
2
+ 2y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.258045 + 0.197115I
b = 0
4.66906 2.82812I 2.98758 + 12.02771I
u = 0.215080 1.307140I
a = 0.258045 0.197115I
b = 0
4.66906 + 2.82812I 2.98758 12.02771I
u = 0.569840
a = 9.48391
b = 0
0.531480 90.9750
19
IV. I
v
1
= ha, 3b + v 5, v
2
7v + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
v
0
a
8
=
1
0
a
4
=
0
1
3
v +
5
3
a
12
=
v
0
a
3
=
1
3
v +
5
3
1
3
v +
5
3
a
6
=
1
1
3
v
8
3
a
5
=
1
3
v
5
3
1
3
v
8
3
a
9
=
2
3
v +
16
3
v + 7
a
2
=
1
1
3
v
8
3
a
1
=
2
3
v
16
3
v 7
a
10
=
1
3
v +
16
3
v + 7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 49
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
7
, c
11
u
2
c
8
u
2
+ 3u + 1
c
9
, c
10
(u + 1)
2
c
12
(u 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
8
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
7
, c
11
y
2
c
9
, c
10
, c
12
(y 1)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.145898
a = 0
b = 1.61803
7.23771 49.0000
v = 6.85410
a = 0
b = 0.618034
0.657974 49.0000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u
2
3u + 1)(u
3
u
2
+ 2u 1)
2
· (u
65
+ 35u
64
+ ··· + 4379u + 1)
c
2
((u 1)
3
)(u
2
+ u 1)(u
3
+ u
2
1)
2
(u
65
7u
64
+ ··· 61u 1)
c
3
u
3
(u
2
+ u 1)(u
3
u
2
+ 2u 1)
2
(u
65
4u
64
+ ··· 4u 8)
c
4
((u + 1)
3
)(u
2
u 1)(u
3
u
2
+ 1)
2
(u
65
7u
64
+ ··· 61u 1)
c
5
u
6
(u
2
3u + 1)(u
3
3u
2
+ 2u + 1)(u
65
3u
64
+ ··· + 224u 64)
c
6
u
3
(u
2
u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
65
4u
64
+ ··· 4u 8)
c
7
u
2
(u
2
u 1)
3
(u
3
+ u
2
+ 2u + 1)(u
65
5u
64
+ ··· + 4u 4)
c
8
u
6
(u
2
+ 3u + 1)(u
3
+ 3u
2
+ 2u 1)(u
65
3u
64
+ ··· + 224u 64)
c
9
, c
10
((u + 1)
2
)(u
2
u 1)
3
(u
3
u
2
+ 1)(u
65
+ 7u
64
+ ··· + 88u 1)
c
11
u
2
(u
2
+ u 1)
3
(u
3
u
2
+ 2u 1)(u
65
5u
64
+ ··· + 4u 4)
c
12
((u 1)
2
)(u
2
+ u 1)
3
(u
3
+ u
2
1)(u
65
+ 7u
64
+ ··· + 88u 1)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
3
(y
2
7y + 1)(y
3
+ 3y
2
+ 2y 1)
2
· (y
65
3y
64
+ ··· + 19078099y 1)
c
2
, c
4
(y 1)
3
(y
2
3y + 1)(y
3
y
2
+ 2y 1)
2
· (y
65
35y
64
+ ··· + 4379y 1)
c
3
, c
6
y
3
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
65
+ 24y
64
+ ··· + 7056y 64)
c
5
, c
8
y
6
(y
2
7y + 1)(y
3
5y
2
+ 10y 1)
· (y
65
47y
64
+ ··· + 283648y 4096)
c
7
, c
11
y
2
(y
2
3y + 1)
3
(y
3
+ 3y
2
+ 2y 1)(y
65
21y
64
+ ··· + 1448y 16)
c
9
, c
10
, c
12
(y 1)
2
(y
2
3y + 1)
3
(y
3
y
2
+ 2y 1)
· (y
65
55y
64
+ ··· + 6134y 1)
25