12n
0093
(K12n
0093
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 4 11 6 12 7 9 10
Solving Sequence
4,6 7,11
8 9 12 3 5 2 1 10
c
6
c
7
c
8
c
11
c
3
c
5
c
2
c
1
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h8.15753 × 10
41
u
22
3.72668 × 10
42
u
21
+ ··· + 7.71580 × 10
42
b + 1.17939 × 10
43
,
1.10388 × 10
43
u
22
4.86462 × 10
43
u
21
+ ··· + 1.54316 × 10
43
a + 2.96744 × 10
44
, u
23
4u
22
+ ··· 36u + 8i
I
u
2
= h−u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
3u
2
+ b + 2u 1,
3u
8
+ 4u
7
8u
6
+ 7u
5
13u
4
+ 9u
3
11u
2
+ a + 6u 6, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
I
u
3
= h−2u
2
a au u
2
+ b u, 2u
2
a + a
2
au 11u
2
2a 5u 19, u
3
+ u
2
+ 2u + 1i
I
v
1
= ha, 5v
2
+ 7b 49v + 11, v
3
10v
2
+ 5v 1i
* 4 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h8.16×10
41
u
22
3.73×10
42
u
21
+· · ·+7.72×10
42
b+1.18×10
43
, 1.10×10
43
u
22
4.86 × 10
43
u
21
+ · · · + 1.54 × 10
43
a + 2.97 × 10
44
, u
23
4u
22
+ · · · 36u + 8i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
0.715334u
22
+ 3.15238u
21
+ ··· + 69.0282u 19.2296
0.105725u
22
+ 0.482993u
21
+ ··· + 14.9531u 1.52853
a
8
=
0.186391u
22
+ 0.803680u
21
+ ··· + 9.92260u 5.79288
0.0258071u
22
+ 0.120060u
21
+ ··· + 3.37054u 0.131649
a
9
=
0.212198u
22
+ 0.923740u
21
+ ··· + 13.2931u 5.92453
0.0258071u
22
+ 0.120060u
21
+ ··· + 3.37054u 0.131649
a
12
=
0.576767u
22
+ 2.56286u
21
+ ··· + 55.9572u 14.4153
0.115767u
22
+ 0.522790u
21
+ ··· + 12.7973u 1.57836
a
3
=
u
u
3
+ u
a
5
=
0.0635667u
22
0.259763u
21
+ ··· 11.3894u + 1.71111
0.00786141u
22
0.0482210u
21
+ ··· + 1.53688u 0.150885
a
2
=
0.0506560u
22
+ 0.189656u
21
+ ··· + 13.6327u 1.90596
0.0232321u
22
0.108930u
21
+ ··· + 2.18167u 0.0911079
a
1
=
0.0557053u
22
+ 0.211542u
21
+ ··· + 12.9263u 1.86199
0.0193035u
22
0.0931377u
21
+ ··· + 1.57646u 0.0606498
a
10
=
0.714037u
22
+ 3.15386u
21
+ ··· + 67.7812u 18.4298
0.108857u
22
+ 0.493167u
21
+ ··· + 15.1831u 1.58195
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.74869u
22
+ 21.0543u
21
+ ··· + 605.964u 98.1244
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 23u
22
+ ··· + 12783u + 1
c
2
, c
4
u
23
7u
22
+ ··· 113u 1
c
3
, c
6
u
23
4u
22
+ ··· 36u + 8
c
5
, c
8
u
23
+ 3u
22
+ ··· 32u 64
c
7
, c
10
u
23
+ 5u
22
+ ··· + 4608u 512
c
9
, c
11
, c
12
u
23
14u
22
+ ··· + 247u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
39y
22
+ ··· + 163240279y 1
c
2
, c
4
y
23
23y
22
+ ··· + 12783y 1
c
3
, c
6
y
23
12y
22
+ ··· + 7568y 64
c
5
, c
8
y
23
+ 37y
22
+ ··· + 234496y 4096
c
7
, c
10
y
23
111y
22
+ ··· + 71041024y 262144
c
9
, c
11
, c
12
y
23
48y
22
+ ··· + 59963y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.810706 + 0.505931I
a = 0.375875 0.573416I
b = 0.094068 0.572082I
0.87687 + 1.52898I 6.60742 3.54271I
u = 0.810706 0.505931I
a = 0.375875 + 0.573416I
b = 0.094068 + 0.572082I
0.87687 1.52898I 6.60742 + 3.54271I
u = 0.273102 + 1.253150I
a = 0.905694 + 0.280329I
b = 1.78345 1.11930I
2.20419 + 2.68521I 2.70136 + 6.44368I
u = 0.273102 1.253150I
a = 0.905694 0.280329I
b = 1.78345 + 1.11930I
2.20419 2.68521I 2.70136 6.44368I
u = 0.282905 + 0.561433I
a = 0.025171 + 0.255386I
b = 0.116102 1.176160I
1.45854 + 3.25209I 3.51442 11.82565I
u = 0.282905 0.561433I
a = 0.025171 0.255386I
b = 0.116102 + 1.176160I
1.45854 3.25209I 3.51442 + 11.82565I
u = 0.904186 + 1.051940I
a = 0.346587 0.098446I
b = 0.141661 + 0.415462I
5.12106 6.15902I 10.50715 + 1.63362I
u = 0.904186 1.051940I
a = 0.346587 + 0.098446I
b = 0.141661 0.415462I
5.12106 + 6.15902I 10.50715 1.63362I
u = 0.603575
a = 4.66294
b = 0.0529154
9.92701 35.8110
u = 0.518673
a = 1.24139
b = 0.270054
1.19404 8.40790
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.271589 + 0.441556I
a = 0.17891 4.69126I
b = 0.423841 + 0.717638I
2.85899 + 0.09109I 11.2448 8.7640I
u = 0.271589 0.441556I
a = 0.17891 + 4.69126I
b = 0.423841 0.717638I
2.85899 0.09109I 11.2448 + 8.7640I
u = 0.439625
a = 12.6495
b = 2.20680
2.87501 99.4720
u = 0.0940545
a = 7.89489
b = 0.510696
1.10354 8.74790
u = 1.16222 + 1.51464I
a = 0.789835 + 0.935119I
b = 0.43899 2.10734I
15.7088 13.9110I 11.35191 + 5.40734I
u = 1.16222 1.51464I
a = 0.789835 0.935119I
b = 0.43899 + 2.10734I
15.7088 + 13.9110I 11.35191 5.40734I
u = 1.41200 + 1.76863I
a = 0.536030 0.772744I
b = 0.24550 + 2.28839I
19.7178 + 6.1351I 0
u = 1.41200 1.76863I
a = 0.536030 + 0.772744I
b = 0.24550 2.28839I
19.7178 6.1351I 0
u = 2.39957 + 0.70874I
a = 0.624715 0.384715I
b = 0.36478 + 1.74735I
14.2988 3.5584I 0
u = 2.39957 0.70874I
a = 0.624715 + 0.384715I
b = 0.36478 1.74735I
14.2988 + 3.5584I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.52063
a = 0.877307
b = 0.551360
18.9120 0
u = 1.97498 + 1.71262I
a = 0.304781 + 0.587751I
b = 0.05752 2.27275I
14.2364 + 2.5672I 0
u = 1.97498 1.71262I
a = 0.304781 0.587751I
b = 0.05752 + 2.27275I
14.2364 2.5672I 0
7
II. I
u
2
= h−u
8
+ 2u
7
+ · · · + b 1, 3u
8
+ 4u
7
+ · · · + a 6, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
3u
8
4u
7
+ 8u
6
7u
5
+ 13u
4
9u
3
+ 11u
2
6u + 6
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
3u
8
4u
7
+ 8u
6
7u
5
+ 13u
4
9u
3
+ 10u
2
6u + 5
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 2u
2
2u + 1
a
3
=
u
u
3
+ u
a
5
=
u
4
+ u
2
+ 1
u
4
a
2
=
u
6
u
4
2u
2
1
u
8
2u
6
2u
4
2u
2
a
1
=
u
2
1
u
2
a
10
=
3u
8
4u
7
+ 8u
6
7u
5
+ 13u
4
9u
3
+ 11u
2
6u + 6
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45u
8
63u
7
+ 119u
6
104u
5
+ 184u
4
133u
3
+ 157u
2
83u + 73
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
2
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
3
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
4
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
5
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
6
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
7
, c
10
u
9
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
9
(u 1)
9
c
11
, c
12
(u + 1)
9
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
4
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
6
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
5
, c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
c
9
, c
11
, c
12
(y 1)
9
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.920144 0.598375I
b = 1.004430 + 0.297869I
0.13850 + 2.09337I 6.65973 4.50528I
u = 0.140343 0.966856I
a = 0.920144 + 0.598375I
b = 1.004430 0.297869I
0.13850 2.09337I 6.65973 + 4.50528I
u = 0.628449 + 0.875112I
a = 0.590648 0.449402I
b = 0.275254 + 0.816341I
2.26187 + 2.45442I 9.69685 4.13179I
u = 0.628449 0.875112I
a = 0.590648 + 0.449402I
b = 0.275254 0.816341I
2.26187 2.45442I 9.69685 + 4.13179I
u = 0.796005 + 0.733148I
a = 0.719281 0.119276I
b = 0.070080 0.850995I
6.01628 + 1.33617I 13.00050 1.13735I
u = 0.796005 0.733148I
a = 0.719281 + 0.119276I
b = 0.070080 + 0.850995I
6.01628 1.33617I 13.00050 + 1.13735I
u = 0.728966 + 0.986295I
a = 0.365868 + 0.247975I
b = 0.195086 0.635552I
5.24306 7.08493I 11.6081 + 10.4867I
u = 0.728966 0.986295I
a = 0.365868 0.247975I
b = 0.195086 + 0.635552I
5.24306 + 7.08493I 11.6081 10.4867I
u = 0.512358
a = 14.5113
b = 3.80937
2.84338 193.930
11
III. I
u
3
=
h−2u
2
aauu
2
+bu, 2u
2
a+a
2
au11u
2
2a5u19, u
3
+u
2
+2u+1i
(i) Arc colorings
a
4
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
11
=
a
2u
2
a + au + u
2
+ u
a
8
=
u
2
a au 3u
2
a 2u 4
0
a
9
=
u
2
a au 3u
2
a 2u 4
0
a
12
=
2u
2
a 2au 4u
2
a 3u 5
2u
2
a + au + u
2
+ u
a
3
=
u
u
2
u 1
a
5
=
1
0
a
2
=
u
2
1
u
2
u 1
a
1
=
1
u
2
a
10
=
u
2
a + au + u
2
+ a + u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
2
a 21u
2
3a 13u 44
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
9
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
c
7
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.284420 0.112842I
b = 2.68975 + 0.90979I
2.03717 + 2.82812I 27.3018 15.7639I
u = 0.215080 + 1.307140I
a = 0.255377 + 0.295424I
b = 1.027390 0.347508I
5.85852 + 2.82812I 12.61597 1.90115I
u = 0.215080 1.307140I
a = 1.284420 + 0.112842I
b = 2.68975 0.90979I
2.03717 2.82812I 27.3018 + 15.7639I
u = 0.215080 1.307140I
a = 0.255377 0.295424I
b = 1.027390 + 0.347508I
5.85852 2.82812I 12.61597 + 1.90115I
u = 0.569840
a = 3.52133
b = 0.525405
2.10041 19.1260
u = 0.569840
a = 5.60092
b = 0.200687
9.99610 82.0390
15
IV. I
v
1
= ha, 5v
2
+ 7b 49v + 11, v
3
10v
2
+ 5v 1i
(i) Arc colorings
a
4
=
v
0
a
6
=
1
0
a
7
=
1
0
a
11
=
0
5
7
v
2
+ 7v
11
7
a
8
=
1
2
7
v
2
+ 3v
17
7
a
9
=
2
7
v
2
+ 3v
10
7
2
7
v
2
+ 3v
17
7
a
12
=
1
2
7
v
2
+ 3v
17
7
a
3
=
v
0
a
5
=
5
7
v
2
7v +
25
7
v
2
10v + 5
a
2
=
5
7
v
2
+ 8v
25
7
v
2
+ 10v 5
a
1
=
5
7
v
2
+ 7v
25
7
v
2
+ 10v 5
a
10
=
5
7
v
2
+ 7v
11
7
5
7
v
2
+ 7v
11
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
30
7
v
2
33v +
3
7
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
u
3
+ 3u
2
+ 2u 1
c
7
u
3
u
2
+ 2u 1
c
8
u
3
3u
2
+ 2u + 1
c
9
u
3
+ u
2
1
c
10
u
3
+ u
2
+ 2u + 1
c
11
, c
12
u
3
u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
8
y
3
5y
2
+ 10y 1
c
7
, c
10
y
3
+ 3y
2
+ 2y 1
c
9
, c
11
, c
12
y
3
y
2
+ 2y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.258045 + 0.197115I
a = 0
b = 0.215080 + 1.307140I
1.37919 2.82812I 7.96807 6.06881I
v = 0.258045 0.197115I
a = 0
b = 0.215080 1.307140I
1.37919 + 2.82812I 7.96807 + 6.06881I
v = 9.48391
a = 0
b = 0.569840
2.75839 72.9360
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u
3
u
2
+ 2u 1)
2
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
23
+ 23u
22
+ ··· + 12783u + 1)
c
2
(u 1)
3
(u
3
+ u
2
1)
2
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
23
7u
22
+ ··· 113u 1)
c
3
u
3
(u
3
u
2
+ 2u 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
23
4u
22
+ ··· 36u + 8)
c
4
(u + 1)
3
(u
3
u
2
+ 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
23
7u
22
+ ··· 113u 1)
c
5
u
6
(u
3
+ 3u
2
+ 2u 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
23
+ 3u
22
+ ··· 32u 64)
c
6
u
3
(u
3
+ u
2
+ 2u + 1)
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
23
4u
22
+ ··· 36u + 8)
c
7
u
9
(u
2
+ u 1)
3
(u
3
u
2
+ 2u 1)(u
23
+ 5u
22
+ ··· + 4608u 512)
c
8
u
6
(u
3
3u
2
+ 2u + 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
23
+ 3u
22
+ ··· 32u 64)
c
9
((u 1)
9
)(u
2
+ u 1)
3
(u
3
+ u
2
1)(u
23
14u
22
+ ··· + 247u + 1)
c
10
u
9
(u
2
u 1)
3
(u
3
+ u
2
+ 2u + 1)(u
23
+ 5u
22
+ ··· + 4608u 512)
c
11
, c
12
((u + 1)
9
)(u
2
u 1)
3
(u
3
u
2
+ 1)(u
23
14u
22
+ ··· + 247u + 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
23
39y
22
+ ··· + 163240279y 1)
c
2
, c
4
(y 1)
3
(y
3
y
2
+ 2y 1)
2
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
23
23y
22
+ ··· + 12783y 1)
c
3
, c
6
y
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
23
12y
22
+ ··· + 7568y 64)
c
5
, c
8
y
6
(y
3
5y
2
+ 10y 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
23
+ 37y
22
+ ··· + 234496y 4096)
c
7
, c
10
y
9
(y
2
3y + 1)
3
(y
3
+ 3y
2
+ 2y 1)
· (y
23
111y
22
+ ··· + 71041024y 262144)
c
9
, c
11
, c
12
(y 1)
9
(y
2
3y + 1)
3
(y
3
y
2
+ 2y 1)
· (y
23
48y
22
+ ··· + 59963y 1)
21