12n
0099
(K12n
0099
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 9 10 3 11 1 12 8 6
Solving Sequence
8,11
9
3,12
7 10 6 1 2 5 4
c
8
c
11
c
7
c
10
c
6
c
12
c
1
c
5
c
4
c
2
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.67717 × 10
122
u
80
+ 2.40640 × 10
123
u
79
+ ··· + 1.36344 × 10
123
b 1.28567 × 10
122
,
1.49380 × 10
122
u
80
+ 9.63422 × 10
122
u
79
+ ··· + 6.81720 × 10
122
a 3.22718 × 10
124
,
u
81
4u
80
+ ··· + 83u + 1i
I
u
2
= hb, u
3
+ a 2, u
4
+ u
2
+ u + 1i
I
u
3
= hb, u
3
+ u
2
+ a 2u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
u
4
= h−au + b + 2u, a
2
+ au 3a 3u + 2, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.68 × 10
122
u
80
+ 2.41 × 10
123
u
79
+ · · · + 1.36 × 10
123
b 1.29 ×
10
122
, 1.49 × 10
122
u
80
+ 9.63 × 10
122
u
79
+ · · · + 6.82 × 10
122
a 3.23 ×
10
124
, u
81
4u
80
+ · · · + 83u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
3
=
0.219123u
80
1.41322u
79
+ ··· + 157.415u + 47.3388
0.416386u
80
1.76495u
79
+ ··· 43.2149u + 0.0942957
a
12
=
u
u
a
7
=
0.327866u
80
+ 1.87240u
79
+ ··· 62.8797u 27.5857
0.435511u
80
+ 1.87462u
79
+ ··· + 47.9628u + 0.199503
a
10
=
u
3
u
3
+ u
a
6
=
0.236666u
80
+ 1.65002u
79
+ ··· 61.3415u 27.5686
0.457531u
80
+ 2.08795u
79
+ ··· + 57.2670u + 0.314050
a
1
=
0.253925u
80
0.469551u
79
+ ··· + 57.0053u + 9.60025
0.376132u
80
+ 1.67454u
79
+ ··· + 43.3245u + 0.630057
a
2
=
0.0290630u
80
0.406433u
79
+ ··· + 115.361u + 29.5970
0.334532u
80
1.24445u
79
+ ··· 23.7001u + 0.0863807
a
5
=
0.567784u
80
+ 2.57406u
79
+ ··· 60.4666u 27.1793
0.334532u
80
+ 1.24445u
79
+ ··· + 23.7001u 0.0863807
a
4
=
0.197263u
80
0.351727u
79
+ ··· 200.629u 47.2445
0.416386u
80
+ 1.76495u
79
+ ··· + 43.2149u 0.0942957
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.523679u
80
1.64827u
79
+ ··· + 61.1096u 9.44591
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
81
+ 33u
80
+ ··· + 130u + 1
c
2
, c
4
u
81
13u
80
+ ··· 12u + 1
c
3
, c
7
u
81
3u
80
+ ··· + 1024u + 1024
c
5
u
81
+ u
80
+ ··· + 8905262u + 2124511
c
6
u
81
+ 5u
80
+ ··· 47488u + 22208
c
8
, c
11
u
81
+ 4u
80
+ ··· + 83u 1
c
9
u
81
+ 8u
80
+ ··· + 256u + 16
c
10
u
81
+ 30u
80
+ ··· + 6303u 1
c
12
u
81
4u
80
+ ··· 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
81
+ 43y
80
+ ··· + 5274y 1
c
2
, c
4
y
81
33y
80
+ ··· + 130y 1
c
3
, c
7
y
81
+ 57y
80
+ ··· 27787264y 1048576
c
5
y
81
+ 47y
80
+ ··· + 59668081079090y 4513546989121
c
6
y
81
+ 103y
80
+ ··· 19451522048y 493195264
c
8
, c
11
y
81
+ 30y
80
+ ··· + 6303y 1
c
9
y
81
20y
80
+ ··· 1152y 256
c
10
y
81
+ 46y
80
+ ··· + 39786411y 1
c
12
y
81
6y
80
+ ··· + 11y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.505398 + 0.861438I
a = 4.37384 2.52183I
b = 0.603292 0.010555I
1.02453 2.05291I 171.972 + 28.532I
u = 0.505398 0.861438I
a = 4.37384 + 2.52183I
b = 0.603292 + 0.010555I
1.02453 + 2.05291I 171.972 28.532I
u = 0.009112 + 1.005390I
a = 0.308654 + 0.203514I
b = 0.336499 0.810387I
4.60609 1.52975I 0
u = 0.009112 1.005390I
a = 0.308654 0.203514I
b = 0.336499 + 0.810387I
4.60609 + 1.52975I 0
u = 0.742803 + 0.679982I
a = 0.167793 + 0.282223I
b = 0.67879 + 1.59644I
6.21314 4.26930I 0
u = 0.742803 0.679982I
a = 0.167793 0.282223I
b = 0.67879 1.59644I
6.21314 + 4.26930I 0
u = 0.724035 + 0.675293I
a = 1.163810 + 0.739644I
b = 0.239752 1.287670I
0.58736 1.68614I 0
u = 0.724035 0.675293I
a = 1.163810 0.739644I
b = 0.239752 + 1.287670I
0.58736 + 1.68614I 0
u = 0.264835 + 0.948397I
a = 0.02548 2.76624I
b = 0.086690 1.153850I
1.73887 + 0.56914I 0
u = 0.264835 0.948397I
a = 0.02548 + 2.76624I
b = 0.086690 + 1.153850I
1.73887 0.56914I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.479721 + 0.852602I
a = 1.22325 1.39529I
b = 1.59287 + 0.05128I
8.92096 + 1.95711I 29.9268 + 41.7453I
u = 0.479721 0.852602I
a = 1.22325 + 1.39529I
b = 1.59287 0.05128I
8.92096 1.95711I 29.9268 41.7453I
u = 0.615664 + 0.829871I
a = 1.37738 + 1.51974I
b = 0.154661 1.382630I
3.68961 + 0.58365I 0
u = 0.615664 0.829871I
a = 1.37738 1.51974I
b = 0.154661 + 1.382630I
3.68961 0.58365I 0
u = 0.825094 + 0.624144I
a = 0.916453 0.626602I
b = 1.357180 + 0.050552I
2.74432 4.49163I 0
u = 0.825094 0.624144I
a = 0.916453 + 0.626602I
b = 1.357180 0.050552I
2.74432 + 4.49163I 0
u = 0.524882 + 0.802233I
a = 4.37321 + 0.45617I
b = 0.458462 + 0.233945I
1.11518 1.63608I 22.5154 + 16.4209I
u = 0.524882 0.802233I
a = 4.37321 0.45617I
b = 0.458462 0.233945I
1.11518 + 1.63608I 22.5154 16.4209I
u = 0.703049 + 0.783366I
a = 0.83771 + 1.13988I
b = 1.42270 + 0.44570I
1.96531 + 1.49483I 0
u = 0.703049 0.783366I
a = 0.83771 1.13988I
b = 1.42270 0.44570I
1.96531 1.49483I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.026493 + 0.936757I
a = 0.59780 + 2.29454I
b = 0.439042 + 1.154740I
0.95414 4.42889I 4.00000 + 4.19606I
u = 0.026493 0.936757I
a = 0.59780 2.29454I
b = 0.439042 1.154740I
0.95414 + 4.42889I 4.00000 4.19606I
u = 0.671407 + 0.627762I
a = 0.913409 0.028748I
b = 0.412488 + 0.213180I
1.15026 1.50439I 2.46877 + 2.61626I
u = 0.671407 0.627762I
a = 0.913409 + 0.028748I
b = 0.412488 0.213180I
1.15026 + 1.50439I 2.46877 2.61626I
u = 0.599484 + 0.904512I
a = 2.63171 1.35351I
b = 0.277078 + 1.371800I
3.45045 5.35632I 0
u = 0.599484 0.904512I
a = 2.63171 + 1.35351I
b = 0.277078 1.371800I
3.45045 + 5.35632I 0
u = 0.561505 + 0.944951I
a = 1.70785 + 3.15850I
b = 0.110600 0.423339I
1.63060 2.73282I 0
u = 0.561505 0.944951I
a = 1.70785 3.15850I
b = 0.110600 + 0.423339I
1.63060 + 2.73282I 0
u = 0.455620 + 1.013820I
a = 0.238189 + 0.544842I
b = 0.029747 + 0.351694I
0.39491 2.82152I 0
u = 0.455620 1.013820I
a = 0.238189 0.544842I
b = 0.029747 0.351694I
0.39491 + 2.82152I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.761415 + 0.820530I
a = 0.531324 0.454947I
b = 0.42765 1.74880I
8.06491 + 2.92024I 0
u = 0.761415 0.820530I
a = 0.531324 + 0.454947I
b = 0.42765 + 1.74880I
8.06491 2.92024I 0
u = 0.108997 + 1.122070I
a = 2.39634 0.23797I
b = 0.890661 + 0.321140I
3.72961 3.73093I 0
u = 0.108997 1.122070I
a = 2.39634 + 0.23797I
b = 0.890661 0.321140I
3.72961 + 3.73093I 0
u = 0.997287 + 0.541891I
a = 0.369368 0.079618I
b = 0.66734 1.50573I
7.29123 11.70270I 0
u = 0.997287 0.541891I
a = 0.369368 + 0.079618I
b = 0.66734 + 1.50573I
7.29123 + 11.70270I 0
u = 0.959008 + 0.624962I
a = 0.148070 + 0.092204I
b = 0.36850 + 1.64315I
9.10043 4.86820I 0
u = 0.959008 0.624962I
a = 0.148070 0.092204I
b = 0.36850 1.64315I
9.10043 + 4.86820I 0
u = 0.682699 + 0.926132I
a = 1.43843 + 0.92415I
b = 1.54169 0.19466I
1.52644 + 3.83350I 0
u = 0.682699 0.926132I
a = 1.43843 0.92415I
b = 1.54169 + 0.19466I
1.52644 3.83350I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.745953 + 0.906662I
a = 1.80870 0.05187I
b = 0.63390 + 1.61836I
7.80552 + 2.77364I 0
u = 0.745953 0.906662I
a = 1.80870 + 0.05187I
b = 0.63390 1.61836I
7.80552 2.77364I 0
u = 0.714581 + 0.401247I
a = 1.165920 0.348917I
b = 0.616988 0.161976I
1.29375 1.45245I 3.62930 + 4.86424I
u = 0.714581 0.401247I
a = 1.165920 + 0.348917I
b = 0.616988 + 0.161976I
1.29375 + 1.45245I 3.62930 4.86424I
u = 0.062348 + 0.798476I
a = 1.53880 + 1.10941I
b = 0.880183 0.328930I
2.15630 + 0.07606I 8.00350 + 0.07144I
u = 0.062348 0.798476I
a = 1.53880 1.10941I
b = 0.880183 + 0.328930I
2.15630 0.07606I 8.00350 0.07144I
u = 0.675941 + 0.993873I
a = 0.976588 0.077747I
b = 0.00539 + 1.42943I
0.36837 + 7.06216I 0
u = 0.675941 0.993873I
a = 0.976588 + 0.077747I
b = 0.00539 1.42943I
0.36837 7.06216I 0
u = 0.680506 + 0.995566I
a = 2.16987 + 0.15146I
b = 0.83647 1.48482I
5.25967 + 9.70670I 0
u = 0.680506 0.995566I
a = 2.16987 0.15146I
b = 0.83647 + 1.48482I
5.25967 9.70670I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.753433 + 0.220803I
a = 0.235608 + 0.164102I
b = 0.020461 + 0.617454I
1.20619 3.00339I 2.21341 + 3.98452I
u = 0.753433 0.220803I
a = 0.235608 0.164102I
b = 0.020461 0.617454I
1.20619 + 3.00339I 2.21341 3.98452I
u = 0.292757 + 1.184200I
a = 0.573258 + 0.779271I
b = 0.077263 + 0.631820I
5.47007 + 0.37522I 0
u = 0.292757 1.184200I
a = 0.573258 0.779271I
b = 0.077263 0.631820I
5.47007 0.37522I 0
u = 1.152240 + 0.412570I
a = 0.130976 + 0.209918I
b = 0.16545 + 1.48707I
7.13557 + 1.25582I 0
u = 1.152240 0.412570I
a = 0.130976 0.209918I
b = 0.16545 1.48707I
7.13557 1.25582I 0
u = 0.684988 + 1.023750I
a = 1.51416 + 0.44312I
b = 0.757611 + 0.003546I
0.12016 3.83503I 0
u = 0.684988 1.023750I
a = 1.51416 0.44312I
b = 0.757611 0.003546I
0.12016 + 3.83503I 0
u = 0.703453 + 1.042720I
a = 1.25123 1.15161I
b = 1.45915 0.22710I
1.48186 + 10.21890I 0
u = 0.703453 1.042720I
a = 1.25123 + 1.15161I
b = 1.45915 + 0.22710I
1.48186 10.21890I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.532163 + 1.140700I
a = 0.456393 0.597727I
b = 0.060321 0.542689I
3.86039 + 7.78753I 0
u = 0.532163 1.140700I
a = 0.456393 + 0.597727I
b = 0.060321 + 0.542689I
3.86039 7.78753I 0
u = 1.138710 + 0.566751I
a = 0.479445 0.126460I
b = 0.25605 1.48232I
6.96738 5.09561I 0
u = 1.138710 0.566751I
a = 0.479445 + 0.126460I
b = 0.25605 + 1.48232I
6.96738 + 5.09561I 0
u = 0.752599 + 1.093140I
a = 1.79634 0.18613I
b = 0.51625 1.63587I
7.63873 + 11.12540I 0
u = 0.752599 1.093140I
a = 1.79634 + 0.18613I
b = 0.51625 + 1.63587I
7.63873 11.12540I 0
u = 0.240383 + 1.329020I
a = 0.39785 + 1.40917I
b = 0.123794 + 1.279290I
0.90648 3.26112I 0
u = 0.240383 1.329020I
a = 0.39785 1.40917I
b = 0.123794 1.279290I
0.90648 + 3.26112I 0
u = 0.729533 + 1.141910I
a = 2.16101 + 0.00371I
b = 0.75699 + 1.47497I
5.4200 + 17.9748I 0
u = 0.729533 1.141910I
a = 2.16101 0.00371I
b = 0.75699 1.47497I
5.4200 17.9748I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.100629 + 1.380790I
a = 1.09077 1.42258I
b = 0.50450 1.33076I
0.35544 9.04141I 0
u = 0.100629 1.380790I
a = 1.09077 + 1.42258I
b = 0.50450 + 1.33076I
0.35544 + 9.04141I 0
u = 0.87285 + 1.14057I
a = 0.715969 + 0.518957I
b = 0.05609 + 1.43328I
5.23560 2.02485I 0
u = 0.87285 1.14057I
a = 0.715969 0.518957I
b = 0.05609 1.43328I
5.23560 + 2.02485I 0
u = 0.80039 + 1.23078I
a = 1.41250 0.47345I
b = 0.35709 1.43000I
4.66300 8.19652I 0
u = 0.80039 1.23078I
a = 1.41250 + 0.47345I
b = 0.35709 + 1.43000I
4.66300 + 8.19652I 0
u = 0.455946 + 0.115914I
a = 0.197228 + 1.245260I
b = 0.21037 + 1.44375I
4.09035 3.09672I 6.42475 + 2.99947I
u = 0.455946 0.115914I
a = 0.197228 1.245260I
b = 0.21037 1.44375I
4.09035 + 3.09672I 6.42475 2.99947I
u = 0.293387 + 0.220524I
a = 4.39202 + 0.48966I
b = 0.455347 0.441128I
1.004280 0.810007I 4.84130 2.46574I
u = 0.293387 0.220524I
a = 4.39202 0.48966I
b = 0.455347 + 0.441128I
1.004280 + 0.810007I 4.84130 + 2.46574I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0125912
a = 45.4131
b = 0.612334
1.00318 10.1710
13
II. I
u
2
= hb, u
3
+ a 2, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
3
=
u
3
+ 2
0
a
12
=
u
u
a
7
=
1
0
a
10
=
u
3
u
3
+ u
a
6
=
u
3
+ u
2
+ 1
u
3
+ u
2
+ u + 1
a
1
=
u
3
u
2
u 1
u
2
u 1
a
2
=
u
2
u + 1
u
2
u 1
a
5
=
u
3
+ u
2
+ u + 1
u
2
+ u + 1
a
4
=
u
3
+ 2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
3
2u
2
+ 2u 1
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
8
, c
9
u
4
+ u
2
+ u + 1
c
6
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
10
u
4
2u
3
+ 3u
2
u + 1
c
11
u
4
+ u
2
u + 1
c
12
u
4
+ 2u
3
+ 3u
2
+ u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
, c
9
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
6
y
4
y
3
+ 2y
2
+ 7y + 4
c
10
, c
12
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 2.39923 + 0.32564I
b = 0
0.66484 1.39709I 1.58487 + 5.38446I
u = 0.547424 0.585652I
a = 2.39923 0.32564I
b = 0
0.66484 + 1.39709I 1.58487 5.38446I
u = 0.547424 + 1.120870I
a = 0.100768 0.400532I
b = 0
4.26996 + 7.64338I 15.0849 3.8174I
u = 0.547424 1.120870I
a = 0.100768 + 0.400532I
b = 0
4.26996 7.64338I 15.0849 + 3.8174I
17
III. I
u
3
= hb, u
3
+ u
2
+ a 2u + 1, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
3
=
u
3
u
2
+ 2u 1
0
a
12
=
u
u
a
7
=
1
0
a
10
=
u
3
u
3
+ u
a
6
=
u
5
+ u
4
2u
3
+ 2u
2
2u + 2
u
5
2u
3
+ u
2
2u + 1
a
1
=
u
4
u
2
+ u 1
2u
5
u
4
+ 3u
3
2u
2
+ 3u 2
a
2
=
u
4
+ u
3
2u
2
+ 3u 2
2u
5
u
4
+ 3u
3
2u
2
+ 3u 2
a
5
=
u
4
+ u
2
u + 1
2u
5
+ u
4
3u
3
+ 2u
2
3u + 2
a
4
=
u
3
u
2
+ 2u 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ u
4
+ 2u
2
+ 3u 12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
8
, c
9
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
6
(u
3
u
2
+ 1)
2
c
10
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
11
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
12
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
, c
9
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
6
(y
3
y
2
+ 2y 1)
2
c
10
, c
12
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.13238 + 2.74513I
b = 0
1.91067 2.82812I 14.1402 + 3.6935I
u = 0.498832 1.001300I
a = 0.13238 2.74513I
b = 0
1.91067 + 2.82812I 14.1402 3.6935I
u = 0.284920 + 1.115140I
a = 0.307599 + 0.479689I
b = 0
6.04826 14.4399 + 2.5036I
u = 0.284920 1.115140I
a = 0.307599 0.479689I
b = 0
6.04826 14.4399 2.5036I
u = 0.713912 + 0.305839I
a = 0.175218 + 0.614017I
b = 0
1.91067 2.82812I 8.91986 + 1.90022I
u = 0.713912 0.305839I
a = 0.175218 0.614017I
b = 0
1.91067 + 2.82812I 8.91986 1.90022I
21
IV. I
u
4
= h−au + b + 2u, a
2
+ au 3a 3u + 2, u
2
+ u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u + 1
a
3
=
a
au 2u
a
12
=
u
u
a
7
=
2au a + 5u + 4
au + 2u 1
a
10
=
1
u + 1
a
6
=
2au 2a + 3u + 4
2au a + 2u + 1
a
1
=
3au 3a + 8u + 6
3au + 6u 2
a
2
=
au a + 3u + 3
au + 2u 1
a
5
=
2au a + 5u + 4
au + 2u 1
a
4
=
au + a + 2u
au 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21au 42a + 25u + 91
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
7
(u
2
u 1)
2
c
5
, c
6
u
4
3u
3
+ 8u
2
3u + 1
c
8
(u
2
+ u + 1)
2
c
9
u
4
c
10
, c
11
(u
2
u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
7
(y
2
3y + 1)
2
c
5
, c
6
y
4
+ 7y
3
+ 48y
2
+ 7y + 1
c
8
, c
10
, c
11
(y
2
+ y + 1)
2
c
9
y
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.19098 1.40126I
b = 1.61803
8.88264 2.02988I 15.5000 + 44.1304I
u = 0.500000 + 0.866025I
a = 2.30902 + 0.53523I
b = 0.618034
0.98696 2.02988I 15.5000 37.2022I
u = 0.500000 0.866025I
a = 1.19098 + 1.40126I
b = 1.61803
8.88264 + 2.02988I 15.5000 44.1304I
u = 0.500000 0.866025I
a = 2.30902 0.53523I
b = 0.618034
0.98696 + 2.02988I 15.5000 + 37.2022I
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
2
3u + 1)
2
(u
81
+ 33u
80
+ ··· + 130u + 1)
c
2
((u 1)
10
)(u
2
+ u 1)
2
(u
81
13u
80
+ ··· 12u + 1)
c
3
u
10
(u
2
+ u 1)
2
(u
81
3u
80
+ ··· + 1024u + 1024)
c
4
((u + 1)
10
)(u
2
u 1)
2
(u
81
13u
80
+ ··· 12u + 1)
c
5
(u
4
+ u
2
+ u + 1)(u
4
3u
3
+ 8u
2
3u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
81
+ u
80
+ ··· + 8905262u + 2124511)
c
6
(u
3
u
2
+ 1)
2
(u
4
3u
3
+ 8u
2
3u + 1)(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)
· (u
81
+ 5u
80
+ ··· 47488u + 22208)
c
7
u
10
(u
2
u 1)
2
(u
81
3u
80
+ ··· + 1024u + 1024)
c
8
(u
2
+ u + 1)
2
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
81
+ 4u
80
+ ··· + 83u 1)
c
9
u
4
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
81
+ 8u
80
+ ··· + 256u + 16)
c
10
(u
2
u + 1)
2
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
81
+ 30u
80
+ ··· + 6303u 1)
c
11
(u
2
u + 1)
2
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
81
+ 4u
80
+ ··· + 83u 1)
c
12
(u
2
3u + 1)
2
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
81
4u
80
+ ··· 5u + 1)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
2
7y + 1)
2
(y
81
+ 43y
80
+ ··· + 5274y 1)
c
2
, c
4
((y 1)
10
)(y
2
3y + 1)
2
(y
81
33y
80
+ ··· + 130y 1)
c
3
, c
7
y
10
(y
2
3y + 1)
2
(y
81
+ 57y
80
+ ··· 2.77873 × 10
7
y 1048576)
c
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
+ 47y
80
+ ··· + 59668081079090y 4513546989121)
c
6
((y
3
y
2
+ 2y 1)
2
)(y
4
y
3
+ 2y
2
+ 7y + 4)(y
4
+ 7y
3
+ ··· + 7y + 1)
· (y
81
+ 103y
80
+ ··· 19451522048y 493195264)
c
8
, c
11
(y
2
+ y + 1)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
+ 30y
80
+ ··· + 6303y 1)
c
9
y
4
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
20y
80
+ ··· 1152y 256)
c
10
((y
2
+ y + 1)
2
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
81
+ 46y
80
+ ··· + 39786411y 1)
c
12
((y
2
7y + 1)
2
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
81
6y
80
+ ··· + 11y 1)
27