12n
0101
(K12n
0101
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 9 12 3 11 1 6 8 10
Solving Sequence
3,8 7,12
6 11 9 5 2 1 10 4
c
7
c
6
c
11
c
8
c
5
c
2
c
1
c
9
c
4
c
3
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.59917 × 10
63
u
33
4.04815 × 10
63
u
32
+ ··· + 1.01107 × 10
66
b + 7.19589 × 10
65
,
2.84744 × 10
64
u
33
3.34343 × 10
64
u
32
+ ··· + 1.61772 × 10
67
a 7.28658 × 10
66
,
u
34
2u
33
+ ··· + 400u 128i
I
u
2
= h4784545058115u
24
a + 8814443854630u
24
+ ··· 99015474327346a + 74552531293308,
140691453969588u
24
a + 1943939955417363u
24
+ ··· + 540597466811832a + 15906220085088582,
u
25
u
24
+ ··· + 4u + 4i
I
u
3
= hb + 1, 4u
2
+ 2a 2u 5, u
3
+ u
2
+ 2u + 1i
I
u
4
= h2au + b + a + u 1, a
2
6au + 10a 29u + 47, u
2
u 1i
I
v
1
= ha, 20v
2
+ 13b + 69v 1, 4v
3
13v
2
v 1i
I
v
2
= ha, b
2
bv b + v + 1, v
2
+ v + 1i
* 6 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.60×10
63
u
33
4.05×10
63
u
32
+· · ·+1.01×10
66
b+7.20×10
65
, 2.85×10
64
u
33
3.34 × 10
64
u
32
+ · · · + 1.62 × 10
67
a 7.29 × 10
66
, u
34
2u
33
+ · · · + 400u 128i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
12
=
0.00176016u
33
+ 0.00206675u
32
+ ··· + 0.145149u + 0.450423
0.00158165u
33
+ 0.00400381u
32
+ ··· + 2.00876u 0.711707
a
6
=
0.000752148u
33
+ 0.00180308u
32
+ ··· 0.0951497u + 0.841117
0.00232746u
33
0.00334332u
32
+ ··· + 0.699372u 0.556479
a
11
=
0.000178509u
33
0.00193705u
32
+ ··· 1.86361u + 1.16213
0.00158165u
33
+ 0.00400381u
32
+ ··· + 2.00876u 0.711707
a
9
=
0.000793255u
33
+ 0.000256525u
32
+ ··· + 1.90039u + 0.0186257
0.00108195u
33
+ 0.00161394u
32
+ ··· 1.21132u + 0.797112
a
5
=
0.00194472u
33
0.00378095u
32
+ ··· 4.35824u + 0.981712
0.00233421u
33
+ 0.00660539u
32
+ ··· + 6.08710u 1.30793
a
2
=
0.000389490u
33
0.00282444u
32
+ ··· 1.72886u + 0.326216
0.00233421u
33
+ 0.00660539u
32
+ ··· + 6.08710u 1.30793
a
1
=
0.000389490u
33
0.00282444u
32
+ ··· 1.72886u + 0.326216
0.00149271u
33
+ 0.00529712u
32
+ ··· + 5.21906u 1.04611
a
10
=
0.00250395u
33
+ 0.00347839u
32
+ ··· + 1.84036u + 0.964059
0.00443973u
33
0.00740068u
32
+ ··· 2.07611u 0.614602
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0304081u
33
+ 0.0343758u
32
+ ··· + 21.2214u + 3.74656
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
34
+ 19u
33
+ ··· + 24097u + 256
c
2
, c
4
u
34
5u
33
+ ··· + 129u + 16
c
3
, c
7
u
34
2u
33
+ ··· + 400u 128
c
5
, c
6
8(8u
34
12u
33
+ ··· 20u 4)
c
8
, c
9
, c
11
c
12
u
34
3u
33
+ ··· 14u + 1
c
10
u
34
+ 6u
33
+ ··· 960u 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
34
3y
33
+ ··· 473567809y + 65536
c
2
, c
4
y
34
19y
33
+ ··· 24097y + 256
c
3
, c
7
y
34
+ 12y
33
+ ··· 83200y + 16384
c
5
, c
6
64(64y
34
336y
33
+ ··· 672y + 16)
c
8
, c
9
, c
11
c
12
y
34
+ 15y
33
+ ··· 100y + 1
c
10
y
34
+ 22y
33
+ ··· 872448y + 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.794712 + 0.456011I
a = 0.188293 + 1.208770I
b = 0.240887 0.522076I
1.49824 + 0.24728I 0.14004 3.83407I
u = 0.794712 0.456011I
a = 0.188293 1.208770I
b = 0.240887 + 0.522076I
1.49824 0.24728I 0.14004 + 3.83407I
u = 0.832178 + 0.785945I
a = 0.447308 0.208329I
b = 0.408436 + 0.761565I
1.67003 2.80421I 0.86901 + 5.38758I
u = 0.832178 0.785945I
a = 0.447308 + 0.208329I
b = 0.408436 0.761565I
1.67003 + 2.80421I 0.86901 5.38758I
u = 0.059447 + 1.230540I
a = 1.319320 + 0.166847I
b = 1.210090 + 0.579679I
5.21011 1.36737I 3.81985 1.34255I
u = 0.059447 1.230540I
a = 1.319320 0.166847I
b = 1.210090 0.579679I
5.21011 + 1.36737I 3.81985 + 1.34255I
u = 0.393005 + 1.221530I
a = 1.127800 0.513887I
b = 1.39318 0.40476I
4.28492 4.01263I 0.30460 + 7.28252I
u = 0.393005 1.221530I
a = 1.127800 + 0.513887I
b = 1.39318 + 0.40476I
4.28492 + 4.01263I 0.30460 7.28252I
u = 0.720618 + 1.080510I
a = 0.955921 0.511219I
b = 0.583998 + 0.942648I
2.44267 4.12024I 3.28639 + 5.00197I
u = 0.720618 1.080510I
a = 0.955921 + 0.511219I
b = 0.583998 0.942648I
2.44267 + 4.12024I 3.28639 5.00197I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.650367 + 0.044010I
a = 1.12796 1.09386I
b = 0.930560 + 0.199538I
0.690195 + 0.080524I 8.8969 15.6686I
u = 0.650367 0.044010I
a = 1.12796 + 1.09386I
b = 0.930560 0.199538I
0.690195 0.080524I 8.8969 + 15.6686I
u = 0.39356 + 1.36168I
a = 1.203780 0.501729I
b = 0.474808 1.157210I
6.44421 6.99411I 2.98433 + 6.50573I
u = 0.39356 1.36168I
a = 1.203780 + 0.501729I
b = 0.474808 + 1.157210I
6.44421 + 6.99411I 2.98433 6.50573I
u = 0.87961 + 1.15587I
a = 0.913426 + 0.382143I
b = 0.464763 1.155720I
0.80760 + 9.64229I 2.05779 8.26691I
u = 0.87961 1.15587I
a = 0.913426 0.382143I
b = 0.464763 + 1.155720I
0.80760 9.64229I 2.05779 + 8.26691I
u = 1.35864 + 0.52500I
a = 0.193842 0.210406I
b = 0.541334 + 1.208100I
5.25087 + 10.27080I 2.87805 7.59115I
u = 1.35864 0.52500I
a = 0.193842 + 0.210406I
b = 0.541334 1.208100I
5.25087 10.27080I 2.87805 + 7.59115I
u = 1.45769 + 0.28609I
a = 0.190522 + 0.239926I
b = 0.437920 1.051280I
3.76533 4.11043I 1.57621 + 5.08065I
u = 1.45769 0.28609I
a = 0.190522 0.239926I
b = 0.437920 + 1.051280I
3.76533 + 4.11043I 1.57621 5.08065I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.20308 + 1.50476I
a = 0.650989 0.156764I
b = 0.450406 0.473646I
3.73592 + 1.81982I 0.08831 + 1.82850I
u = 0.20308 1.50476I
a = 0.650989 + 0.156764I
b = 0.450406 + 0.473646I
3.73592 1.81982I 0.08831 1.82850I
u = 0.475511
a = 1.67568
b = 0.0960916
1.21807 10.2050
u = 0.81913 + 1.33067I
a = 1.41026 + 0.17074I
b = 0.64527 1.33926I
2.5846 17.9258I 1.78648 + 9.71152I
u = 0.81913 1.33067I
a = 1.41026 0.17074I
b = 0.64527 + 1.33926I
2.5846 + 17.9258I 1.78648 9.71152I
u = 0.042281 + 0.429124I
a = 0.167290 0.199986I
b = 0.23202 + 1.50109I
10.86120 + 5.07702I 13.61431 + 1.23428I
u = 0.042281 0.429124I
a = 0.167290 + 0.199986I
b = 0.23202 1.50109I
10.86120 5.07702I 13.61431 1.23428I
u = 0.68128 + 1.43732I
a = 1.280410 + 0.028747I
b = 0.641425 + 1.240980I
0.15639 + 11.56040I 0.62674 6.67003I
u = 0.68128 1.43732I
a = 1.280410 0.028747I
b = 0.641425 1.240980I
0.15639 11.56040I 0.62674 + 6.67003I
u = 0.09648 + 1.64631I
a = 0.710357 + 0.202519I
b = 0.514600 + 0.733387I
3.88573 + 4.85584I 1.37960 7.57560I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.09648 1.64631I
a = 0.710357 0.202519I
b = 0.514600 0.733387I
3.88573 4.85584I 1.37960 + 7.57560I
u = 0.327433
a = 1.02586
b = 0.565142
0.885375 11.5390
u = 1.70092 + 0.16271I
a = 0.068129 0.255918I
b = 0.124754 + 0.960782I
12.03160 + 0.52686I 0. 14.5498I
u = 1.70092 0.16271I
a = 0.068129 + 0.255918I
b = 0.124754 0.960782I
12.03160 0.52686I 0. + 14.5498I
8
II.
I
u
2
= h4.78×10
12
au
24
+8.81×10
12
u
24
+· · ·9.90×10
13
a+7.46×10
13
, 1.41×
10
14
au
24
+1.94×10
15
u
24
+· · ·+5.41×10
14
a+1.59×10
16
, u
25
u
24
+· · ·+4u+4i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
12
=
a
0.258951au
24
0.477058u
24
+ ··· + 5.35894a 4.03495
a
6
=
0.124665au
24
3.59160u
24
+ ··· + 1.27680a 26.1250
0.924644au
24
+ 1.04931u
24
+ ··· + 1.62244a 2.89924
a
11
=
0.258951au
24
+ 0.477058u
24
+ ··· 4.35894a + 4.03495
0.258951au
24
0.477058u
24
+ ··· + 5.35894a 4.03495
a
9
=
1.08855au
24
+ 0.147616u
24
+ ··· 0.207055a 8.18295
1.26334au
24
1.09943u
24
+ ··· 2.69616a + 4.52566
a
5
=
0.663007u
24
+ 0.208677u
23
+ ··· 5.67662u 0.806984
0.644979u
24
0.740559u
23
+ ··· + 3.48093u 1.06790
a
2
=
0.0180278u
24
+ 0.531881u
23
+ ··· + 2.19569u + 1.87488
0.644979u
24
0.740559u
23
+ ··· + 3.48093u 1.06790
a
1
=
0.0180278u
24
+ 0.531881u
23
+ ··· + 2.19569u + 1.87488
0.651848u
24
0.230278u
23
+ ··· + 5.75268u + 1.13174
a
10
=
0.477058au
24
+ 0.192998u
24
+ ··· 4.03495a 6.54862
1
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
6062761600965
9238337702138
u
24
3225176474347
9238337702138
u
23
+ ···
61042729884201
9238337702138
u
9798007398656
4619168851069
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
25
+ 11u
24
+ ··· 2u + 1)
2
c
2
, c
4
(u
25
3u
24
+ ··· 4u + 1)
2
c
3
, c
7
(u
25
u
24
+ ··· + 4u + 4)
2
c
5
, c
6
u
50
4u
49
+ ··· + 9832u + 2407
c
8
, c
9
, c
11
c
12
u
50
+ 8u
49
+ ··· + 434u + 49
c
10
(u
25
2u
24
+ ··· + 3u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
25
+ 9y
24
+ ··· 2y 1)
2
c
2
, c
4
(y
25
11y
24
+ ··· 2y 1)
2
c
3
, c
7
(y
25
+ 15y
24
+ ··· 88y 16)
2
c
5
, c
6
y
50
+ 18y
49
+ ··· + 211966944y + 5793649
c
8
, c
9
, c
11
c
12
y
50
+ 30y
49
+ ··· + 4704y + 2401
c
10
(y
25
+ 8y
24
+ ··· + 11y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.111975 + 0.962557I
a = 1.72008 0.26684I
b = 0.665176 + 0.113324I
3.49154 2.66172I 1.28523 + 3.57661I
u = 0.111975 + 0.962557I
a = 1.13128 + 1.66859I
b = 0.381710 + 1.094260I
3.49154 2.66172I 1.28523 + 3.57661I
u = 0.111975 0.962557I
a = 1.72008 + 0.26684I
b = 0.665176 0.113324I
3.49154 + 2.66172I 1.28523 3.57661I
u = 0.111975 0.962557I
a = 1.13128 1.66859I
b = 0.381710 1.094260I
3.49154 + 2.66172I 1.28523 3.57661I
u = 1.061780 + 0.135314I
a = 0.240534 + 0.826928I
b = 0.394082 0.313244I
1.76494 + 0.43356I 0.911962 + 0.045065I
u = 1.061780 + 0.135314I
a = 0.157939 + 0.550535I
b = 0.287348 0.868580I
1.76494 + 0.43356I 0.911962 + 0.045065I
u = 1.061780 0.135314I
a = 0.240534 0.826928I
b = 0.394082 + 0.313244I
1.76494 0.43356I 0.911962 0.045065I
u = 1.061780 0.135314I
a = 0.157939 0.550535I
b = 0.287348 + 0.868580I
1.76494 0.43356I 0.911962 0.045065I
u = 0.465035 + 1.033020I
a = 1.48303 0.11082I
b = 0.86062 1.16851I
5.20581 5.41987I 3.35697 + 6.54919I
u = 0.465035 + 1.033020I
a = 0.034490 + 0.179256I
b = 0.30041 + 1.61643I
5.20581 5.41987I 3.35697 + 6.54919I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.465035 1.033020I
a = 1.48303 + 0.11082I
b = 0.86062 + 1.16851I
5.20581 + 5.41987I 3.35697 6.54919I
u = 0.465035 1.033020I
a = 0.034490 0.179256I
b = 0.30041 1.61643I
5.20581 + 5.41987I 3.35697 6.54919I
u = 1.096160 + 0.296196I
a = 0.424515 + 0.723296I
b = 0.877631 0.175572I
2.14901 + 5.11531I 0.18255 5.48464I
u = 1.096160 + 0.296196I
a = 0.133523 + 0.354909I
b = 0.531250 1.162460I
2.14901 + 5.11531I 0.18255 5.48464I
u = 1.096160 0.296196I
a = 0.424515 0.723296I
b = 0.877631 + 0.175572I
2.14901 5.11531I 0.18255 + 5.48464I
u = 1.096160 0.296196I
a = 0.133523 0.354909I
b = 0.531250 + 1.162460I
2.14901 5.11531I 0.18255 + 5.48464I
u = 0.202658 + 1.122680I
a = 1.19686 + 1.38943I
b = 0.194773 1.170190I
1.18805 + 2.44039I 3.83401 3.61173I
u = 0.202658 + 1.122680I
a = 1.88921 0.26546I
b = 0.315193 + 0.999419I
1.18805 + 2.44039I 3.83401 3.61173I
u = 0.202658 1.122680I
a = 1.19686 1.38943I
b = 0.194773 + 1.170190I
1.18805 2.44039I 3.83401 + 3.61173I
u = 0.202658 1.122680I
a = 1.88921 + 0.26546I
b = 0.315193 0.999419I
1.18805 2.44039I 3.83401 + 3.61173I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.641188 + 0.544744I
a = 0.583198 + 1.057510I
b = 0.440569 + 1.132290I
6.75523 + 1.05922I 7.39395 0.37058I
u = 0.641188 + 0.544744I
a = 3.42198 + 0.62987I
b = 0.321269 1.257010I
6.75523 + 1.05922I 7.39395 0.37058I
u = 0.641188 0.544744I
a = 0.583198 1.057510I
b = 0.440569 1.132290I
6.75523 1.05922I 7.39395 + 0.37058I
u = 0.641188 0.544744I
a = 3.42198 0.62987I
b = 0.321269 + 1.257010I
6.75523 1.05922I 7.39395 + 0.37058I
u = 0.082989 + 0.805818I
a = 1.048640 + 0.674364I
b = 0.914155 + 0.667714I
3.91328 + 1.39976I 0.957222 0.060617I
u = 0.082989 + 0.805818I
a = 0.258734 + 0.032072I
b = 0.07533 1.53307I
3.91328 + 1.39976I 0.957222 0.060617I
u = 0.082989 0.805818I
a = 1.048640 0.674364I
b = 0.914155 0.667714I
3.91328 1.39976I 0.957222 + 0.060617I
u = 0.082989 0.805818I
a = 0.258734 0.032072I
b = 0.07533 + 1.53307I
3.91328 1.39976I 0.957222 + 0.060617I
u = 0.340493 + 0.559321I
a = 0.708209 0.192820I
b = 0.071939 1.290900I
3.62565 + 1.50728I 1.02072 4.31266I
u = 0.340493 + 0.559321I
a = 1.57740 + 1.43813I
b = 0.478126 + 0.780931I
3.62565 + 1.50728I 1.02072 4.31266I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.340493 0.559321I
a = 0.708209 + 0.192820I
b = 0.071939 + 1.290900I
3.62565 1.50728I 1.02072 + 4.31266I
u = 0.340493 0.559321I
a = 1.57740 1.43813I
b = 0.478126 0.780931I
3.62565 1.50728I 1.02072 + 4.31266I
u = 0.291960 + 1.368920I
a = 1.040950 + 0.164703I
b = 0.535319 0.817834I
3.63887 + 0.59688I 4.46758 1.80507I
u = 0.291960 + 1.368920I
a = 0.439291 0.194912I
b = 0.625618 0.508372I
3.63887 + 0.59688I 4.46758 1.80507I
u = 0.291960 1.368920I
a = 1.040950 0.164703I
b = 0.535319 + 0.817834I
3.63887 0.59688I 4.46758 + 1.80507I
u = 0.291960 1.368920I
a = 0.439291 + 0.194912I
b = 0.625618 + 0.508372I
3.63887 0.59688I 4.46758 + 1.80507I
u = 0.414621 + 1.342760I
a = 1.111960 0.253905I
b = 1.076060 0.322023I
3.05811 + 5.44271I 3.50171 3.51350I
u = 0.414621 + 1.342760I
a = 1.225620 0.254682I
b = 0.730267 1.190880I
3.05811 + 5.44271I 3.50171 3.51350I
u = 0.414621 1.342760I
a = 1.111960 + 0.253905I
b = 1.076060 + 0.322023I
3.05811 5.44271I 3.50171 + 3.51350I
u = 0.414621 1.342760I
a = 1.225620 + 0.254682I
b = 0.730267 + 1.190880I
3.05811 5.44271I 3.50171 + 3.51350I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.55118 + 1.32473I
a = 1.144470 0.278607I
b = 0.393415 + 1.053730I
2.03395 + 5.36637I 2.46678 3.05337I
u = 0.55118 + 1.32473I
a = 0.537601 0.047197I
b = 0.643930 + 0.168348I
2.03395 + 5.36637I 2.46678 3.05337I
u = 0.55118 1.32473I
a = 1.144470 + 0.278607I
b = 0.393415 1.053730I
2.03395 5.36637I 2.46678 + 3.05337I
u = 0.55118 1.32473I
a = 0.537601 + 0.047197I
b = 0.643930 0.168348I
2.03395 5.36637I 2.46678 + 3.05337I
u = 0.64072 + 1.29917I
a = 1.012980 + 0.450455I
b = 1.221550 + 0.193871I
1.04287 11.39030I 0.71017 + 7.76664I
u = 0.64072 + 1.29917I
a = 1.376020 0.045093I
b = 0.73317 + 1.35425I
1.04287 11.39030I 0.71017 + 7.76664I
u = 0.64072 1.29917I
a = 1.012980 0.450455I
b = 1.221550 0.193871I
1.04287 + 11.39030I 0.71017 7.76664I
u = 0.64072 1.29917I
a = 1.376020 + 0.045093I
b = 0.73317 1.35425I
1.04287 + 11.39030I 0.71017 7.76664I
u = 0.518583
a = 15.1403 + 19.4448I
b = 0.031733 1.001510I
4.48394 4.44380
u = 0.518583
a = 15.1403 19.4448I
b = 0.031733 + 1.001510I
4.48394 4.44380
16
III. I
u
3
= hb + 1, 4u
2
+ 2a 2u 5, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
12
=
2u
2
+ u +
5
2
1
a
6
=
1
4
u
2
+
1
2
1
2
u
2
a
11
=
2u
2
+ u +
7
2
1
a
9
=
2u
2
+ u +
9
2
1
a
5
=
u
2
+ 1
u
2
a
2
=
1
u
2
a
1
=
1
0
a
10
=
2u
2
+ u +
7
2
1
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
95
4
u
2
49
4
u
153
4
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
8(8u
3
+ 12u
2
+ 4u 1)
c
6
8(8u
3
12u
2
+ 4u + 1)
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u + 1)
3
c
10
u
3
c
11
, c
12
(u 1)
3
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
, c
6
64(64y
3
80y
2
+ 40y 1)
c
8
, c
9
, c
11
c
12
(y 1)
3
c
10
y
3
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.039800 + 0.182582I
b = 1.00000
4.66906 + 2.82812I 3.86575 2.65834I
u = 0.215080 1.307140I
a = 1.039800 0.182582I
b = 1.00000
4.66906 2.82812I 3.86575 + 2.65834I
u = 0.569840
a = 2.57960
b = 1.00000
0.531480 38.9820
20
IV. I
u
4
= h2au + b + a + u 1, a
2
6au + 10a 29u + 47, u
2
u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u 1
a
12
=
a
2au a u + 1
a
6
=
3au 5a + 18u 28
au + 2u 6
a
11
=
2au + 2a + u 1
2au a u + 1
a
9
=
au + a 7u + 11
1
a
5
=
1
u 1
a
2
=
u
u 1
a
1
=
u
3u 2
a
10
=
4au a 7u + 10
13au + 8a + 2u + 2
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
7
(u
2
u 1)
2
c
5
u
4
6u
3
+ 18u
2
12u + 4
c
6
u
4
+ 6u
3
+ 18u
2
+ 12u + 4
c
8
, c
9
, c
11
c
12
(u
2
+ 1)
2
c
10
u
4
+ 7u
2
+ 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
7
(y
2
3y + 1)
2
c
5
, c
6
y
4
+ 188y
2
+ 16
c
8
, c
9
, c
11
c
12
(y + 1)
4
c
10
(y
2
+ 7y + 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 6.85410 + 4.23607I
b = 1.000000I
4.27683 8.00000
u = 0.618034
a = 6.85410 4.23607I
b = 1.000000I
4.27683 8.00000
u = 1.61803
a = 0.145898 + 0.236068I
b = 1.000000I
12.1725 8.00000
u = 1.61803
a = 0.145898 0.236068I
b = 1.000000I
12.1725 8.00000
24
V. I
v
1
= ha, 20v
2
+ 13b + 69v 1, 4v
3
13v
2
v 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
7
=
1
0
a
12
=
0
20
13
v
2
69
13
v +
1
13
a
6
=
1
12
13
v
2
31
13
v
28
13
a
11
=
20
13
v
2
+
69
13
v
1
13
20
13
v
2
69
13
v +
1
13
a
9
=
12
13
v
2
31
13
v
15
13
12
13
v
2
+
31
13
v +
28
13
a
5
=
20
13
v
2
+
69
13
v
1
13
4v
2
13v 1
a
2
=
20
13
v
2
56
13
v +
1
13
4v
2
+ 13v + 1
a
1
=
20
13
v
2
69
13
v +
1
13
4v
2
+ 13v + 1
a
10
=
1
8
13
v
2
+
38
13
v
42
13
a
4
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
71
13
v
2
+
373
13
v
246
13
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
8
c
9
u
3
+ 2u + 1
c
10
u
3
3u
2
+ 5u 2
c
11
, c
12
u
3
+ 2u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
8
c
9
, c
11
, c
12
y
3
+ 4y
2
+ 4y 1
c
10
y
3
+ y
2
+ 13y 4
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.048505 + 0.268962I
a = 0
b = 0.22670 1.46771I
11.08570 5.13794I 19.9326 + 7.8597I
v = 0.048505 0.268962I
a = 0
b = 0.22670 + 1.46771I
11.08570 + 5.13794I 19.9326 7.8597I
v = 3.34701
a = 0
b = 0.453398
0.857735 15.9280
28
VI. I
v
2
= ha, b
2
bv b + v + 1, v
2
+ v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
7
=
1
0
a
12
=
0
b
a
6
=
1
bv + b v 1
a
11
=
b
b
a
9
=
bv + b v
bv b + v + 1
a
5
=
bv + v + 2
v 1
a
2
=
bv 2
v + 1
a
1
=
bv v 2
v + 1
a
10
=
b + v
1
a
4
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 3
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
, c
6
, c
8
c
9
u
4
u
3
+ 2u
2
2u + 1
c
10
(u
2
+ u + 1)
2
c
11
, c
12
u
4
+ u
3
+ 2u
2
+ 2u + 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
8
c
9
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
c
10
(y
2
+ y + 1)
2
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.621744 0.440597I
4.93480 2.02988I 5.00000 + 3.46410I
v = 0.500000 + 0.866025I
a = 0
b = 0.121744 + 1.306620I
4.93480 2.02988I 5.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.621744 + 0.440597I
4.93480 + 2.02988I 5.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.121744 1.306620I
4.93480 + 2.02988I 5.00000 3.46410I
32
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
7
(u
2
3u + 1)
2
(u
3
u
2
+ 2u 1)
· ((u
25
+ 11u
24
+ ··· 2u + 1)
2
)(u
34
+ 19u
33
+ ··· + 24097u + 256)
c
2
((u 1)
7
)(u
2
+ u 1)
2
(u
3
+ u
2
1)(u
25
3u
24
+ ··· 4u + 1)
2
· (u
34
5u
33
+ ··· + 129u + 16)
c
3
u
7
(u
2
+ u 1)
2
(u
3
u
2
+ 2u 1)(u
25
u
24
+ ··· + 4u + 4)
2
· (u
34
2u
33
+ ··· + 400u 128)
c
4
((u + 1)
7
)(u
2
u 1)
2
(u
3
u
2
+ 1)(u
25
3u
24
+ ··· 4u + 1)
2
· (u
34
5u
33
+ ··· + 129u + 16)
c
5
64(u
3
+ 2u + 1)(8u
3
+ 12u
2
+ 4u 1)(u
4
6u
3
+ ··· 12u + 4)
· (u
4
u
3
+ 2u
2
2u + 1)(8u
34
12u
33
+ ··· 20u 4)
· (u
50
4u
49
+ ··· + 9832u + 2407)
c
6
64(u
3
+ 2u + 1)(8u
3
12u
2
+ 4u + 1)(u
4
u
3
+ 2u
2
2u + 1)
· (u
4
+ 6u
3
+ 18u
2
+ 12u + 4)(8u
34
12u
33
+ ··· 20u 4)
· (u
50
4u
49
+ ··· + 9832u + 2407)
c
7
u
7
(u
2
u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
25
u
24
+ ··· + 4u + 4)
2
· (u
34
2u
33
+ ··· + 400u 128)
c
8
, c
9
(u + 1)
3
(u
2
+ 1)
2
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)
· (u
34
3u
33
+ ··· 14u + 1)(u
50
+ 8u
49
+ ··· + 434u + 49)
c
10
u
3
(u
2
+ u + 1)
2
(u
3
3u
2
+ 5u 2)(u
4
+ 7u
2
+ 1)
· ((u
25
2u
24
+ ··· + 3u 1)
2
)(u
34
+ 6u
33
+ ··· 960u 256)
c
11
, c
12
(u 1)
3
(u
2
+ 1)
2
(u
3
+ 2u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
34
3u
33
+ ··· 14u + 1)(u
50
+ 8u
49
+ ··· + 434u + 49)
33
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
7
(y
2
7y + 1)
2
(y
3
+ 3y
2
+ 2y 1)
· (y
25
+ 9y
24
+ ··· 2y 1)
2
· (y
34
3y
33
+ ··· 473567809y + 65536)
c
2
, c
4
(y 1)
7
(y
2
3y + 1)
2
(y
3
y
2
+ 2y 1)
· ((y
25
11y
24
+ ··· 2y 1)
2
)(y
34
19y
33
+ ··· 24097y + 256)
c
3
, c
7
y
7
(y
2
3y + 1)
2
(y
3
+ 3y
2
+ 2y 1)(y
25
+ 15y
24
+ ··· 88y 16)
2
· (y
34
+ 12y
33
+ ··· 83200y + 16384)
c
5
, c
6
4096(y
3
+ 4y
2
+ 4y 1)(64y
3
80y
2
+ 40y 1)(y
4
+ 188y
2
+ 16)
· (y
4
+ 3y
3
+ 2y
2
+ 1)(64y
34
336y
33
+ ··· 672y + 16)
· (y
50
+ 18y
49
+ ··· + 211966944y + 5793649)
c
8
, c
9
, c
11
c
12
(y 1)
3
(y + 1)
4
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
34
+ 15y
33
+ ··· 100y + 1)(y
50
+ 30y
49
+ ··· + 4704y + 2401)
c
10
y
3
(y
2
+ y + 1)
2
(y
2
+ 7y + 1)
2
(y
3
+ y
2
+ 13y 4)
· ((y
25
+ 8y
24
+ ··· + 11y 1)
2
)(y
34
+ 22y
33
+ ··· 872448y + 65536)
34