12n
0103
(K12n
0103
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 9 3 11 12 5 7 8 10
Solving Sequence
5,9 3,6
7 10 11 2 1 4 12 8
c
5
c
6
c
9
c
10
c
2
c
1
c
4
c
12
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2.50755 × 10
20
u
28
4.57339 × 10
20
u
27
+ ··· + 6.70474 × 10
20
b + 2.31276 × 10
20
,
4.30865 × 10
20
u
28
1.13718 × 10
21
u
27
+ ··· + 6.70474 × 10
20
a + 6.48791 × 10
20
, u
29
2u
28
+ ··· u + 1i
I
u
2
= hb + 1, u
5
+ 2u
4
+ 4u
3
+ 5u
2
+ a + 4u + 3, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.51 × 10
20
u
28
4.57 × 10
20
u
27
+ · · · + 6.70 × 10
20
b + 2.31 × 10
20
, 4.31 ×
10
20
u
28
1.14×10
21
u
27
+· · ·+6.70×10
20
a+6.49×10
20
, u
29
2u
28
+· · ·u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
0.642627u
28
+ 1.69608u
27
+ ··· + 4.76582u 0.967660
0.373996u
28
+ 0.682112u
27
+ ··· + 1.36157u 0.344944
a
6
=
1
u
2
a
7
=
0.525413u
28
+ 0.870263u
27
+ ··· + 1.86350u + 0.104816
0.165523u
28
+ 0.372194u
27
+ ··· + 0.644339u + 0.119793
a
10
=
u
u
a
11
=
0.00550978u
28
0.113964u
27
+ ··· 2.05097u 0.744280
0.0294122u
28
+ 0.103634u
27
+ ··· + 0.884693u + 0.0789002
a
2
=
1.01662u
28
+ 2.37819u
27
+ ··· + 6.12739u 1.31260
0.373996u
28
+ 0.682112u
27
+ ··· + 1.36157u 0.344944
a
1
=
0.582562u
28
+ 1.02418u
27
+ ··· + 2.16299u + 0.0440466
0.0571491u
28
0.153913u
27
+ ··· 0.299489u + 0.0607697
a
4
=
0.715822u
28
+ 1.86209u
27
+ ··· + 5.07394u 0.901780
0.390136u
28
+ 0.726358u
27
+ ··· + 1.45438u 0.364566
a
12
=
0.690936u
28
+ 1.24246u
27
+ ··· + 2.50784u + 0.224610
0.165523u
28
0.372194u
27
+ ··· 0.644339u 0.119793
a
8
=
0.0239024u
28
+ 0.0103299u
27
+ ··· + 1.16628u + 0.665380
0.0294122u
28
+ 0.103634u
27
+ ··· + 0.884693u + 0.0789002
(ii) Obstruction class = 1
(iii) Cusp Shapes =
478078822365653903278
134094852819026608583
u
28
5561400214755760811553
670474264095133042915
u
27
+ ···
2275460989738397018314
134094852819026608583
u
5831311641101896181097
670474264095133042915
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
29
+ 39u
28
+ ··· + 2258u + 1
c
2
, c
4
u
29
7u
28
+ ··· 54u + 1
c
3
, c
6
u
29
+ 5u
28
+ ··· + 384u + 64
c
5
, c
9
u
29
+ 2u
28
+ ··· u 1
c
7
, c
8
, c
10
c
11
u
29
+ 2u
28
+ ··· + 5u + 1
c
12
u
29
12u
28
+ ··· + 3529u + 937
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
29
91y
28
+ ··· + 4903026y 1
c
2
, c
4
y
29
39y
28
+ ··· + 2258y 1
c
3
, c
6
y
29
+ 39y
28
+ ··· + 212992y 4096
c
5
, c
9
y
29
+ 30y
27
+ ··· + 13y 1
c
7
, c
8
, c
10
c
11
y
29
36y
28
+ ··· + 13y 1
c
12
y
29
36y
28
+ ··· + 62137329y 877969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.867238 + 0.470147I
a = 0.237339 + 1.389930I
b = 0.92240 1.35617I
12.12860 4.62991I 15.7252 + 5.0837I
u = 0.867238 0.470147I
a = 0.237339 1.389930I
b = 0.92240 + 1.35617I
12.12860 + 4.62991I 15.7252 5.0837I
u = 0.915025
a = 0.602737
b = 2.04399
14.6155 18.8040
u = 0.160840 + 1.087590I
a = 0.0855322 + 0.1114450I
b = 0.493211 0.128104I
2.18324 1.77578I 1.23792 + 3.54893I
u = 0.160840 1.087590I
a = 0.0855322 0.1114450I
b = 0.493211 + 0.128104I
2.18324 + 1.77578I 1.23792 3.54893I
u = 0.766809 + 0.460777I
a = 0.217501 1.292190I
b = 0.793934 + 1.006770I
3.36571 + 3.55459I 14.7590 7.4317I
u = 0.766809 0.460777I
a = 0.217501 + 1.292190I
b = 0.793934 1.006770I
3.36571 3.55459I 14.7590 + 7.4317I
u = 0.807312
a = 0.103435
b = 1.67794
5.54567 19.0490
u = 0.452011 + 1.154640I
a = 0.089699 0.245433I
b = 0.631471 + 0.354822I
4.66125 + 4.01059I 6.69076 1.05481I
u = 0.452011 1.154640I
a = 0.089699 + 0.245433I
b = 0.631471 0.354822I
4.66125 4.01059I 6.69076 + 1.05481I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.580536 + 0.452475I
a = 0.450270 + 1.338160I
b = 0.597116 0.490346I
0.77928 1.44092I 6.71227 + 4.83159I
u = 0.580536 0.452475I
a = 0.450270 1.338160I
b = 0.597116 + 0.490346I
0.77928 + 1.44092I 6.71227 4.83159I
u = 0.734655
a = 1.16704
b = 0.195873
7.96223 11.3580
u = 0.317549 + 0.579846I
a = 3.74066 + 0.93387I
b = 0.910186 + 0.367717I
10.62150 + 0.95783I 12.17772 + 5.24325I
u = 0.317549 0.579846I
a = 3.74066 0.93387I
b = 0.910186 0.367717I
10.62150 0.95783I 12.17772 5.24325I
u = 0.355366 + 0.430210I
a = 2.58524 2.38862I
b = 0.804622 0.092789I
2.40653 0.39885I 18.5948 3.1258I
u = 0.355366 0.430210I
a = 2.58524 + 2.38862I
b = 0.804622 + 0.092789I
2.40653 + 0.39885I 18.5948 + 3.1258I
u = 0.465770
a = 2.93524
b = 1.09023
2.20812 4.71460
u = 1.12576 + 1.06472I
a = 0.564004 1.170310I
b = 1.78727 + 0.43721I
18.7699 11.3822I 14.5597 + 4.9176I
u = 1.12576 1.06472I
a = 0.564004 + 1.170310I
b = 1.78727 0.43721I
18.7699 + 11.3822I 14.5597 4.9176I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.14151 + 1.07839I
a = 0.559145 + 1.007550I
b = 1.72676 0.31572I
11.7546 + 8.6101I 13.1323 5.7611I
u = 1.14151 1.07839I
a = 0.559145 1.007550I
b = 1.72676 + 0.31572I
11.7546 8.6101I 13.1323 + 5.7611I
u = 1.10890 + 1.13111I
a = 0.839564 0.595930I
b = 1.78058 0.11270I
18.9482 + 3.1990I 14.9528 0.8134I
u = 1.10890 1.13111I
a = 0.839564 + 0.595930I
b = 1.78058 + 0.11270I
18.9482 3.1990I 14.9528 + 0.8134I
u = 1.14879 + 1.10311I
a = 0.592413 0.839025I
b = 1.68896 + 0.17655I
8.95243 4.17612I 10.28879 + 2.37984I
u = 1.14879 1.10311I
a = 0.592413 + 0.839025I
b = 1.68896 0.17655I
8.95243 + 4.17612I 10.28879 2.37984I
u = 1.13279 + 1.12536I
a = 0.701441 + 0.703233I
b = 1.71752 0.02970I
11.62970 0.31954I 13.41116 + 1.33191I
u = 1.13279 1.12536I
a = 0.701441 0.703233I
b = 1.71752 + 0.02970I
11.62970 + 0.31954I 13.41116 1.33191I
u = 0.385892
a = 1.12146
b = 0.0212520
0.763627 13.0190
7
II.
I
u
2
= hb+1, u
5
+2u
4
+4u
3
+5u
2
+a+4u +3, u
6
+u
5
+3u
4
+2u
3
+2u
2
+u1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
3
=
u
5
2u
4
4u
3
5u
2
4u 3
1
a
6
=
1
u
2
a
7
=
1
u
2
a
10
=
u
u
a
11
=
u
3
2u
u
5
u
3
+ u
a
2
=
u
5
2u
4
4u
3
5u
2
4u 4
1
a
1
=
1
0
a
4
=
u
5
2u
4
4u
3
5u
2
4u 3
1
a
12
=
u
2
1
u
2
a
8
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
5
15u
4
29u
3
33u
2
28u 32
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
, c
8
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
9
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
10
, c
11
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
9
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
c
7
, c
8
, c
10
c
11
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 1.31147
b = 1.00000
9.30502 18.5710
u = 0.138835 + 1.234450I
a = 0.631845 + 0.143944I
b = 1.00000
1.31531 1.97241I 11.10050 + 4.53432I
u = 0.138835 1.234450I
a = 0.631845 0.143944I
b = 1.00000
1.31531 + 1.97241I 11.10050 4.53432I
u = 0.408802 + 1.276380I
a = 0.453123 0.323434I
b = 1.00000
5.34051 + 4.59213I 13.7303 5.9632I
u = 0.408802 1.276380I
a = 0.453123 + 0.323434I
b = 1.00000
5.34051 4.59213I 13.7303 + 5.9632I
u = 0.413150
a = 5.85846
b = 1.00000
2.38379 51.7680
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
29
+ 39u
28
+ ··· + 2258u + 1)
c
2
((u 1)
6
)(u
29
7u
28
+ ··· 54u + 1)
c
3
, c
6
u
6
(u
29
+ 5u
28
+ ··· + 384u + 64)
c
4
((u + 1)
6
)(u
29
7u
28
+ ··· 54u + 1)
c
5
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
29
+ 2u
28
+ ··· u 1)
c
7
, c
8
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
29
+ 2u
28
+ ··· + 5u + 1)
c
9
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
29
+ 2u
28
+ ··· u 1)
c
10
, c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
29
+ 2u
28
+ ··· + 5u + 1)
c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
29
12u
28
+ ··· + 3529u + 937)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
29
91y
28
+ ··· + 4903026y 1)
c
2
, c
4
((y 1)
6
)(y
29
39y
28
+ ··· + 2258y 1)
c
3
, c
6
y
6
(y
29
+ 39y
28
+ ··· + 212992y 4096)
c
5
, c
9
(y
6
+ 5y
5
+ ··· 5y + 1)(y
29
+ 30y
27
+ ··· + 13y 1)
c
7
, c
8
, c
10
c
11
(y
6
7y
5
+ ··· 5y + 1)(y
29
36y
28
+ ··· + 13y 1)
c
12
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
29
36y
28
+ ··· + 62137329y 877969)
13