12n
0105
(K12n
0105
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 4 11 12 5 7 8 10
Solving Sequence
7,11
8 12
4,9
3 6 5 2 10 1
c
7
c
11
c
8
c
3
c
6
c
5
c
2
c
10
c
12
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h22873134u
26
91748515u
25
+ ··· + 37746988b 44822939,
63338341u
26
295194910u
25
+ ··· + 37746988a 66189548, u
27
5u
26
+ ··· 6u + 1i
I
u
2
= hb, 2u
5
u
4
7u
3
+ u
2
+ a + 5u + 4, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
I
u
3
= h−a
2
+ b 3a 1, a
3
+ 3a
2
+ 2a + 1, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.29 × 10
7
u
26
9.17 × 10
7
u
25
+ · · · + 3.77 × 10
7
b 4.48 × 10
7
, 6.33 ×
10
7
u
26
2.95×10
8
u
25
+· · · +3.77×10
7
a6.62×10
7
, u
27
5u
26
+· · · 6u +1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
12
=
u
u
3
+ u
a
4
=
1.67797u
26
+ 7.82036u
25
+ ··· 8.45077u + 1.75351
0.605959u
26
+ 2.43062u
25
+ ··· 2.79918u + 1.18746
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
2.28393u
26
+ 10.2510u
25
+ ··· 11.2499u + 2.94096
0.605959u
26
+ 2.43062u
25
+ ··· 2.79918u + 1.18746
a
6
=
0.101693u
26
+ 0.926944u
25
+ ··· 7.17642u + 3.14845
1.45363u
26
5.69060u
25
+ ··· + 5.80702u 1.50691
a
5
=
0.758454u
26
2.47127u
25
+ ··· 3.68028u + 1.91598
0.144041u
26
0.819382u
25
+ ··· + 0.700822u 0.562543
a
2
=
1.05084u
26
+ 5.94352u
25
+ ··· 11.3894u + 3.35900
0.144041u
26
+ 0.819382u
25
+ ··· 0.700822u + 0.562543
a
10
=
u
u
a
1
=
u
5
2u
3
u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
725958293
18873494
u
26
+
3202886145
18873494
u
25
+ ···
5326606613
18873494
u +
1076937225
18873494
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
27
+ u
26
+ ··· + 514u + 1
c
2
, c
4
u
27
9u
26
+ ··· + 20u + 1
c
3
, c
6
u
27
3u
26
+ ··· + 128u + 64
c
5
, c
9
u
27
+ 2u
26
+ ··· 352u 64
c
7
, c
8
, c
10
c
11
u
27
+ 5u
26
+ ··· 6u 1
c
12
u
27
+ u
26
+ ··· + 500u 89
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
27
+ 59y
26
+ ··· + 262978y 1
c
2
, c
4
y
27
y
26
+ ··· + 514y 1
c
3
, c
6
y
27
+ 45y
26
+ ··· + 180224y 4096
c
5
, c
9
y
27
+ 40y
26
+ ··· + 103424y 4096
c
7
, c
8
, c
10
c
11
y
27
29y
26
+ ··· 14y 1
c
12
y
27
+ 67y
26
+ ··· 314794y 7921
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514269 + 0.943772I
a = 0.96114 + 1.49139I
b = 0.33697 2.32589I
15.0681 1.4972I 9.94344 0.11775I
u = 0.514269 0.943772I
a = 0.96114 1.49139I
b = 0.33697 + 2.32589I
15.0681 + 1.4972I 9.94344 + 0.11775I
u = 0.664233 + 0.874955I
a = 1.06704 1.64357I
b = 0.62816 + 2.16426I
14.6013 + 7.4637I 10.63048 4.31713I
u = 0.664233 0.874955I
a = 1.06704 + 1.64357I
b = 0.62816 2.16426I
14.6013 7.4637I 10.63048 + 4.31713I
u = 1.182480 + 0.163891I
a = 0.485579 + 0.426627I
b = 0.14520 1.74397I
1.12392 + 3.54626I 14.5183 3.2040I
u = 1.182480 0.163891I
a = 0.485579 0.426627I
b = 0.14520 + 1.74397I
1.12392 3.54626I 14.5183 + 3.2040I
u = 1.261340 + 0.096236I
a = 0.969318 + 0.141624I
b = 0.808086 0.842084I
4.50481 1.41612I 14.8457 + 0.7290I
u = 1.261340 0.096236I
a = 0.969318 0.141624I
b = 0.808086 + 0.842084I
4.50481 + 1.41612I 14.8457 0.7290I
u = 0.153216 + 0.715283I
a = 0.15544 1.50896I
b = 0.68505 + 1.29368I
3.93766 0.32566I 7.68828 0.01937I
u = 0.153216 0.715283I
a = 0.15544 + 1.50896I
b = 0.68505 1.29368I
3.93766 + 0.32566I 7.68828 + 0.01937I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.543053 + 0.346105I
a = 0.952357 0.112943I
b = 0.116929 1.071230I
2.02138 + 3.53683I 8.00351 9.60393I
u = 0.543053 0.346105I
a = 0.952357 + 0.112943I
b = 0.116929 + 1.071230I
2.02138 3.53683I 8.00351 + 9.60393I
u = 1.348160 + 0.304621I
a = 0.990189 + 0.519594I
b = 1.27433 0.79621I
0.78811 3.39068I 12.00000 + 2.97054I
u = 1.348160 0.304621I
a = 0.990189 0.519594I
b = 1.27433 + 0.79621I
0.78811 + 3.39068I 12.00000 2.97054I
u = 0.552139
a = 7.52398
b = 0.222467
2.46059 111.160
u = 1.53250 + 0.12438I
a = 0.477076 + 0.429045I
b = 0.181555 + 0.768118I
4.88486 5.37353I 12.0000 + 7.7726I
u = 1.53250 0.12438I
a = 0.477076 0.429045I
b = 0.181555 0.768118I
4.88486 + 5.37353I 12.0000 7.7726I
u = 1.55351 + 0.07692I
a = 0.278760 + 0.128293I
b = 0.464875 + 0.727258I
7.33821 + 0.72358I 12.00000 + 0.I
u = 1.55351 0.07692I
a = 0.278760 0.128293I
b = 0.464875 0.727258I
7.33821 0.72358I 12.00000 + 0.I
u = 0.440522
a = 0.842102
b = 0.209937
0.703245 13.8830
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60962
a = 3.04132
b = 0.471477
10.1232 65.7520
u = 1.56503 + 0.38318I
a = 0.979548 0.112812I
b = 0.04694 + 2.26665I
8.39568 3.40964I 12.00000 + 0.I
u = 1.56503 0.38318I
a = 0.979548 + 0.112812I
b = 0.04694 2.26665I
8.39568 + 3.40964I 12.00000 + 0.I
u = 1.61847 + 0.30353I
a = 1.37457 + 0.38272I
b = 0.75828 1.91136I
7.09877 11.89130I 12.00000 + 0.I
u = 1.61847 0.30353I
a = 1.37457 0.38272I
b = 0.75828 + 1.91136I
7.09877 + 11.89130I 12.00000 + 0.I
u = 0.093749 + 0.195668I
a = 1.25531 + 1.76548I
b = 0.661199 + 0.033436I
0.945949 + 0.075456I 9.99859 + 1.12534I
u = 0.093749 0.195668I
a = 1.25531 1.76548I
b = 0.661199 0.033436I
0.945949 0.075456I 9.99859 1.12534I
7
II.
I
u
2
= hb, 2u
5
u
4
7u
3
+ u
2
+ a + 5u + 4, u
6
u
5
3u
4
+ 2 u
3
+ 2 u
2
+ u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
12
=
u
u
3
+ u
a
4
=
2u
5
+ u
4
+ 7u
3
u
2
5u 4
0
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
2u
5
+ u
4
+ 7u
3
u
2
5u 4
0
a
6
=
1
0
a
5
=
u
5
+ 2u
3
+ u
u
5
+ 3u
3
u
a
2
=
u
5
+ u
4
+ 5u
3
u
2
6u 4
u
5
3u
3
+ u
a
10
=
u
u
a
1
=
u
5
2u
3
u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
5
6u
4
30u
3
+ 5u
2
+ 17u + 7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
, c
8
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
9
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
10
, c
11
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
9
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
c
7
, c
8
, c
10
c
11
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.631845 0.143944I
b = 0
1.31531 + 1.97241I 10.05095 2.83524I
u = 0.493180 0.575288I
a = 0.631845 + 0.143944I
b = 0
1.31531 1.97241I 10.05095 + 2.83524I
u = 0.483672
a = 5.85846
b = 0
2.38379 12.9340
u = 1.52087 + 0.16310I
a = 0.453123 + 0.323434I
b = 0
5.34051 4.59213I 15.4320 + 0.4465I
u = 1.52087 0.16310I
a = 0.453123 0.323434I
b = 0
5.34051 + 4.59213I 15.4320 0.4465I
u = 1.53904
a = 1.31147
b = 0
9.30502 17.9680
11
III. I
u
3
= h−a
2
+ b 3a 1, a
3
+ 3a
2
+ 2a + 1, u
2
+ u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u + 1
a
12
=
u
u + 1
a
4
=
a
a
2
+ 3a + 1
a
9
=
u
u
a
3
=
a
2
+ 4a + 1
a
2
+ 3a + 1
a
6
=
a + 2
a + 2
a
5
=
a + 2
a + 2
a
2
=
2a + 2
a + 2
a
10
=
u
u
a
1
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
2
u + 3au + a + 3u 9
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
9
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
9
y
6
c
7
, c
8
, c
10
c
11
, c
12
(y
2
3y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.337641 + 0.562280I
b = 0.215080 + 1.307140I
2.03717 + 2.82812I 7.98462 + 1.83947I
u = 0.618034
a = 0.337641 0.562280I
b = 0.215080 1.307140I
2.03717 2.82812I 7.98462 1.83947I
u = 0.618034
a = 2.32472
b = 0.569840
2.10041 17.1210
u = 1.61803
a = 0.337641 + 0.562280I
b = 0.215080 + 1.307140I
5.85852 + 2.82812I 12.87990 2.78145I
u = 1.61803
a = 0.337641 0.562280I
b = 0.215080 1.307140I
5.85852 2.82812I 12.87990 + 2.78145I
u = 1.61803
a = 2.32472
b = 0.569840
9.99610 3.85000
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
3
u
2
+ 2u 1)
2
(u
27
+ u
26
+ ··· + 514u + 1)
c
2
((u 1)
6
)(u
3
+ u
2
1)
2
(u
27
9u
26
+ ··· + 20u + 1)
c
3
u
6
(u
3
u
2
+ 2u 1)
2
(u
27
3u
26
+ ··· + 128u + 64)
c
4
((u + 1)
6
)(u
3
u
2
+ 1)
2
(u
27
9u
26
+ ··· + 20u + 1)
c
5
u
6
(u
6
+ u
5
+ ··· + u 1)(u
27
+ 2u
26
+ ··· 352u 64)
c
6
u
6
(u
3
+ u
2
+ 2u + 1)
2
(u
27
3u
26
+ ··· + 128u + 64)
c
7
, c
8
(u
2
+ u 1)
3
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
27
+ 5u
26
+ ··· 6u 1)
c
9
u
6
(u
6
u
5
+ ··· u 1)(u
27
+ 2u
26
+ ··· 352u 64)
c
10
, c
11
(u
2
u 1)
3
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
· (u
27
+ 5u
26
+ ··· 6u 1)
c
12
(u
2
u 1)
3
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
· (u
27
+ u
26
+ ··· + 500u 89)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
3
+ 3y
2
+ 2y 1)
2
(y
27
+ 59y
26
+ ··· + 262978y 1)
c
2
, c
4
((y 1)
6
)(y
3
y
2
+ 2y 1)
2
(y
27
y
26
+ ··· + 514y 1)
c
3
, c
6
y
6
(y
3
+ 3y
2
+ 2y 1)
2
(y
27
+ 45y
26
+ ··· + 180224y 4096)
c
5
, c
9
y
6
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
27
+ 40y
26
+ ··· + 103424y 4096)
c
7
, c
8
, c
10
c
11
(y
2
3y + 1)
3
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
27
29y
26
+ ··· 14y 1)
c
12
(y
2
3y + 1)
3
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
27
+ 67y
26
+ ··· 314794y 7921)
17