12n
0107
(K12n
0107
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 11 12 6 7 8 10
Solving Sequence
7,10
11 8 12
1,4
3 6 5 2 9
c
10
c
7
c
11
c
12
c
3
c
6
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h47441368u
25
+ 57693789u
24
+ ··· + 104373924b + 18568285,
120201295u
25
+ 398061213u
24
+ ··· + 104373924a + 783424087, u
26
+ 5u
25
+ ··· + 14u 1i
I
u
2
= h2a
2
u + a
2
au + b a + 2u, a
3
a
2
u + a
2
2au + 4a 2u + 3, u
2
u 1i
I
u
3
= hb + 1, a, u + 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4.74 × 10
7
u
25
+ 5 .77 × 10
7
u
24
+ · · · + 1.04 × 10
8
b + 1.86 × 10
7
, 1.20 ×
10
8
u
25
+3.98×10
8
u
24
+· · ·+1.04×10
8
a+7.83×10
8
, u
26
+5u
25
+· · ·+14u1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
4
=
1.15164u
25
3.81380u
24
+ ··· 24.4464u 7.50594
0.454533u
25
0.552761u
24
+ ··· + 13.0629u 0.177902
a
3
=
1.15164u
25
3.81380u
24
+ ··· 24.4464u 7.50594
3.33329u
25
+ 11.3654u
24
+ ··· + 41.4363u 2.12231
a
6
=
0.633480u
25
1.36564u
24
+ ··· + 2.69053u + 4.69952
1.23184u
25
3.55184u
24
+ ··· 6.61306u + 0.205455
a
5
=
0.598359u
25
+ 2.18620u
24
+ ··· + 9.30359u + 4.49406
1.23184u
25
3.55184u
24
+ ··· 6.61306u + 0.205455
a
2
=
0.598359u
25
2.18620u
24
+ ··· 9.30359u 4.49406
0.203032u
25
+ 0.469119u
24
+ ··· + 15.6624u 0.533217
a
9
=
u
3
2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
92088909
17395654
u
25
188693588
8697827
u
24
+ ···
885802456
8697827
u
15795407
8697827
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 20u
25
+ ··· + 79u + 1
c
2
, c
4
u
26
4u
25
+ ··· 11u 1
c
3
, c
6
u
26
3u
25
+ ··· 6u + 2
c
5
, c
9
u
26
2u
25
+ ··· 96u + 64
c
7
, c
8
, c
10
c
11
u
26
+ 5u
25
+ ··· + 14u 1
c
12
u
26
21u
25
+ ··· + 52120u + 337
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
24y
25
+ ··· 6127y + 1
c
2
, c
4
y
26
20y
25
+ ··· 79y + 1
c
3
, c
6
y
26
3y
25
+ ··· 40y + 4
c
5
, c
9
y
26
+ 34y
25
+ ··· 95232y + 4096
c
7
, c
8
, c
10
c
11
y
26
39y
25
+ ··· 304y + 1
c
12
y
26
123y
25
+ ··· 2285596764y + 113569
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.476607 + 0.919429I
a = 0.688440 0.733293I
b = 0.227587 + 1.287750I
5.18299 + 2.95142I 14.7696 4.0162I
u = 0.476607 0.919429I
a = 0.688440 + 0.733293I
b = 0.227587 1.287750I
5.18299 2.95142I 14.7696 + 4.0162I
u = 0.757036
a = 0.441343
b = 0.637723
1.34161 6.51520
u = 1.223650 + 0.232594I
a = 0.924838 0.484695I
b = 0.280314 1.358420I
5.77000 3.25214I 11.73752 + 3.41900I
u = 1.223650 0.232594I
a = 0.924838 + 0.484695I
b = 0.280314 + 1.358420I
5.77000 + 3.25214I 11.73752 3.41900I
u = 1.329480 + 0.241157I
a = 0.277950 + 0.611388I
b = 0.308061 + 0.000558I
3.29395 1.34186I 11.30499 + 4.69401I
u = 1.329480 0.241157I
a = 0.277950 0.611388I
b = 0.308061 0.000558I
3.29395 + 1.34186I 11.30499 4.69401I
u = 1.369250 + 0.095489I
a = 0.500507 0.680570I
b = 0.10931 1.70719I
9.37037 1.40410I 14.8448 + 0.4920I
u = 1.369250 0.095489I
a = 0.500507 + 0.680570I
b = 0.10931 + 1.70719I
9.37037 + 1.40410I 14.8448 0.4920I
u = 1.273730 + 0.536724I
a = 0.988931 + 0.204426I
b = 0.48656 + 1.60886I
10.60190 7.95034I 14.2939 + 5.5201I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.273730 0.536724I
a = 0.988931 0.204426I
b = 0.48656 1.60886I
10.60190 + 7.95034I 14.2939 5.5201I
u = 0.586682 + 0.167108I
a = 0.045237 0.711969I
b = 0.71246 2.34576I
2.72200 + 0.36882I 3.94523 + 10.24837I
u = 0.586682 0.167108I
a = 0.045237 + 0.711969I
b = 0.71246 + 2.34576I
2.72200 0.36882I 3.94523 10.24837I
u = 0.348677 + 0.367916I
a = 1.247060 + 0.371784I
b = 0.209352 0.864493I
0.636376 + 1.127340I 7.20662 6.11077I
u = 0.348677 0.367916I
a = 1.247060 0.371784I
b = 0.209352 + 0.864493I
0.636376 1.127340I 7.20662 + 6.11077I
u = 0.424219 + 0.095685I
a = 0.07818 + 2.89428I
b = 0.1185550 0.0289313I
2.35620 + 2.67700I 3.89989 + 1.35809I
u = 0.424219 0.095685I
a = 0.07818 2.89428I
b = 0.1185550 + 0.0289313I
2.35620 2.67700I 3.89989 1.35809I
u = 1.63681
a = 0.377195
b = 1.87474
9.79249 1.55260
u = 1.80599 + 0.06787I
a = 0.735548 0.651435I
b = 0.23521 1.59914I
16.9214 + 4.6752I 0
u = 1.80599 0.06787I
a = 0.735548 + 0.651435I
b = 0.23521 + 1.59914I
16.9214 4.6752I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.81333 + 0.15530I
a = 0.732203 + 0.586510I
b = 0.50599 + 1.87679I
17.8851 + 11.1272I 0
u = 1.81333 0.15530I
a = 0.732203 0.586510I
b = 0.50599 1.87679I
17.8851 11.1272I 0
u = 1.83864 + 0.02244I
a = 0.672414 0.695929I
b = 0.16075 1.49337I
18.0411 + 1.9797I 0
u = 1.83864 0.02244I
a = 0.672414 + 0.695929I
b = 0.16075 + 1.49337I
18.0411 1.9797I 0
u = 1.87792
a = 0.655106
b = 0.356336
16.1049 16.4270
u = 0.0594263
a = 8.81083
b = 0.576606
1.19028 8.21100
7
II.
I
u
2
= h2a
2
u+a
2
au+b a + 2u, a
3
a
2
u+a
2
2au+4a 2u + 3, u
2
u1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
8
=
u
u 1
a
12
=
u
u
a
1
=
0
u
a
4
=
a
2a
2
u a
2
+ au + a 2u
a
3
=
a
2a
2
u a
2
2u
a
6
=
a
2
u
0
a
5
=
a
2
u
0
a
2
=
a
2
u
2a
2
u a
2
2u
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 19a
2
u 13a
2
+ 9au + a 8u 29
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
9
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
(u
2
+ u 1)
3
c
10
, c
11
, c
12
(u
2
u 1)
3
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
9
y
6
c
7
, c
8
, c
10
c
11
, c
12
(y
2
3y + 1)
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.922021
b = 1.08457
2.10041 20.9180
u = 0.618034
a = 0.34801 + 2.11500I
b = 0.075747 + 0.460350I
2.03717 + 2.82812I 16.9959 7.7984I
u = 0.618034
a = 0.34801 2.11500I
b = 0.075747 0.460350I
2.03717 2.82812I 16.9959 + 7.7984I
u = 1.61803
a = 0.132927 + 0.807858I
b = 0.198308 + 1.205210I
5.85852 2.82812I 12.10059 + 3.17745I
u = 1.61803
a = 0.132927 0.807858I
b = 0.198308 1.205210I
5.85852 + 2.82812I 12.10059 3.17745I
u = 1.61803
a = 0.352181
b = 2.83945
9.99610 41.8890
11
III. I
u
3
= hb + 1, a, u + 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
12
=
0
1
a
1
=
1
1
a
4
=
0
1
a
3
=
0
1
a
6
=
0
1
a
5
=
1
1
a
2
=
1
0
a
9
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
8
u 1
c
3
, c
6
u
c
4
, c
9
, c
10
c
11
, c
12
u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y 1
c
3
, c
6
y
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
u
2
+ 2u 1)
2
(u
26
+ 20u
25
+ ··· + 79u + 1)
c
2
(u 1)(u
3
+ u
2
1)
2
(u
26
4u
25
+ ··· 11u 1)
c
3
u(u
3
u
2
+ 2u 1)
2
(u
26
3u
25
+ ··· 6u + 2)
c
4
(u + 1)(u
3
u
2
+ 1)
2
(u
26
4u
25
+ ··· 11u 1)
c
5
u
6
(u 1)(u
26
2u
25
+ ··· 96u + 64)
c
6
u(u
3
+ u
2
+ 2u + 1)
2
(u
26
3u
25
+ ··· 6u + 2)
c
7
, c
8
(u 1)(u
2
+ u 1)
3
(u
26
+ 5u
25
+ ··· + 14u 1)
c
9
u
6
(u + 1)(u
26
2u
25
+ ··· 96u + 64)
c
10
, c
11
(u + 1)(u
2
u 1)
3
(u
26
+ 5u
25
+ ··· + 14u 1)
c
12
(u + 1)(u
2
u 1)
3
(u
26
21u
25
+ ··· + 52120u + 337)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
26
24y
25
+ ··· 6127y + 1)
c
2
, c
4
(y 1)(y
3
y
2
+ 2y 1)
2
(y
26
20y
25
+ ··· 79y + 1)
c
3
, c
6
y(y
3
+ 3y
2
+ 2y 1)
2
(y
26
3y
25
+ ··· 40y + 4)
c
5
, c
9
y
6
(y 1)(y
26
+ 34y
25
+ ··· 95232y + 4096)
c
7
, c
8
, c
10
c
11
(y 1)(y
2
3y + 1)
3
(y
26
39y
25
+ ··· 304y + 1)
c
12
(y 1)(y
2
3y + 1)
3
(y
26
123y
25
+ ··· 2.28560 × 10
9
y + 113569)
17