10
135
(K10n
5
)
A knot diagram
1
Linearized knot diagam
3 9 1 7 4 9 5 2 7 8
Solving Sequence
2,8
9 3
1,5
7 4 6 10
c
8
c
2
c
1
c
7
c
4
c
5
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
20
u
19
+ ··· + b 2u, u
18
+ u
17
+ ··· + a + 2, u
21
+ 2u
20
+ ··· + u 1i
I
u
2
= hb + 1, a + u, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 24 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
20
u
19
+· · · + b 2u, u
18
+u
17
+· · · + a + 2, u
21
+2u
20
+· · · + u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
5
=
u
18
u
17
+ ··· u 2
u
20
+ u
19
+ ··· + 4u
2
+ 2u
a
7
=
u
20
u
19
+ ··· + u + 3
u
20
u
19
+ ··· 5u
2
u
a
4
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
6
=
2u
20
+ 3u
19
+ ··· + 2u 4
2u
20
+ u
19
+ ··· + 8u
3
+ 7u
2
a
10
=
u
5
u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
20
10u
19
+ 19u
18
+ 42u
17
31u
16
99u
15
+ 18u
14
+ 172u
13
+ 44u
12
198u
11
125u
10
+ 168u
9
+ 183u
8
76u
7
166u
6
8u
5
+ 93u
4
+ 26u
3
41u
2
28u + 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
21
8u
20
+ ··· + 17u 1
c
2
, c
8
u
21
2u
20
+ ··· + u + 1
c
4
, c
7
u
21
4u
20
+ ··· 2u + 1
c
5
u
21
+ 6u
20
+ ··· 2u + 1
c
6
, c
9
u
21
u
20
+ ··· + 4u + 8
c
10
u
21
+ 2u
20
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
21
+ 12y
20
+ ··· + 137y 1
c
2
, c
8
y
21
8y
20
+ ··· + 17y 1
c
4
, c
7
y
21
6y
20
+ ··· 2y 1
c
5
y
21
+ 22y
20
+ ··· + 66y 1
c
6
, c
9
y
21
+ 21y
20
+ ··· 176y 64
c
10
y
21
24y
20
+ ··· + 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.567882 + 0.851579I
a = 0.521076 0.321393I
b = 1.047460 + 0.802568I
2.42497 + 4.94435I 1.24866 2.70559I
u = 0.567882 0.851579I
a = 0.521076 + 0.321393I
b = 1.047460 0.802568I
2.42497 4.94435I 1.24866 + 2.70559I
u = 0.848992 + 0.598239I
a = 1.09099 1.32571I
b = 1.272850 + 0.072825I
3.02655 2.36605I 0.59037 + 2.67274I
u = 0.848992 0.598239I
a = 1.09099 + 1.32571I
b = 1.272850 0.072825I
3.02655 + 2.36605I 0.59037 2.67274I
u = 0.427156 + 0.796867I
a = 0.517814 + 0.424717I
b = 0.770704 0.886977I
3.29052 1.36266I 0.18856 + 2.27516I
u = 0.427156 0.796867I
a = 0.517814 0.424717I
b = 0.770704 + 0.886977I
3.29052 + 1.36266I 0.18856 2.27516I
u = 0.707761 + 0.560391I
a = 0.427154 0.668417I
b = 0.837997 + 0.449477I
1.83472 + 0.21101I 3.18710 0.57244I
u = 0.707761 0.560391I
a = 0.427154 + 0.668417I
b = 0.837997 0.449477I
1.83472 0.21101I 3.18710 + 0.57244I
u = 0.951460 + 0.595395I
a = 0.13569 + 1.78932I
b = 0.666759 0.637720I
1.06863 + 4.45806I 0.43689 6.14529I
u = 0.951460 0.595395I
a = 0.13569 1.78932I
b = 0.666759 + 0.637720I
1.06863 4.45806I 0.43689 + 6.14529I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.853051 + 0.160221I
a = 0.985793 + 0.858266I
b = 0.040042 0.421446I
1.46918 0.34630I 5.96536 + 0.53554I
u = 0.853051 0.160221I
a = 0.985793 0.858266I
b = 0.040042 + 0.421446I
1.46918 + 0.34630I 5.96536 0.53554I
u = 1.169830 + 0.051846I
a = 0.79206 1.88563I
b = 0.960607 + 0.961815I
8.83595 + 3.51416I 4.91512 2.66916I
u = 1.169830 0.051846I
a = 0.79206 + 1.88563I
b = 0.960607 0.961815I
8.83595 3.51416I 4.91512 + 2.66916I
u = 0.882737 + 0.780973I
a = 0.878224 0.429656I
b = 0.622642 + 0.052532I
3.85955 + 2.93752I 2.97600 3.43881I
u = 0.882737 0.780973I
a = 0.878224 + 0.429656I
b = 0.622642 0.052532I
3.85955 2.93752I 2.97600 + 3.43881I
u = 1.083580 + 0.616829I
a = 1.133680 0.321228I
b = 0.721179 + 1.021470I
5.21503 3.89686I 2.41425 + 2.65107I
u = 1.083580 0.616829I
a = 1.133680 + 0.321228I
b = 0.721179 1.021470I
5.21503 + 3.89686I 2.41425 2.65107I
u = 1.075840 + 0.689537I
a = 0.86208 + 1.97593I
b = 1.117050 0.836949I
3.96319 10.68720I 0.56681 + 6.96141I
u = 1.075840 0.689537I
a = 0.86208 1.97593I
b = 1.117050 + 0.836949I
3.96319 + 10.68720I 0.56681 6.96141I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.289436
a = 1.92057
b = 0.843987
1.20998 9.37190
7
II. I
u
2
= hb + 1, a + u, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
2
+ u + 1
a
1
=
u
2
+ 1
u
2
a
5
=
u
1
a
7
=
u + 1
1
a
4
=
1
0
a
6
=
u + 1
1
a
10
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
7u 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
+ 2u + 1
c
2
u
3
+ u
2
1
c
3
, c
10
u
3
u
2
+ 2u 1
c
4
(u 1)
3
c
5
, c
7
(u + 1)
3
c
6
, c
9
u
3
c
8
u
3
u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
10
y
3
+ 3y
2
+ 2y 1
c
2
, c
8
y
3
y
2
+ 2y 1
c
4
, c
5
, c
7
(y 1)
3
c
6
, c
9
y
3
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 1.00000
4.66906 + 2.82812I 7.71191 2.59975I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 1.00000
4.66906 2.82812I 7.71191 + 2.59975I
u = 0.754878
a = 0.754878
b = 1.00000
0.531480 4.42380
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
+ 2u + 1)(u
21
8u
20
+ ··· + 17u 1)
c
2
(u
3
+ u
2
1)(u
21
2u
20
+ ··· + u + 1)
c
3
(u
3
u
2
+ 2u 1)(u
21
8u
20
+ ··· + 17u 1)
c
4
((u 1)
3
)(u
21
4u
20
+ ··· 2u + 1)
c
5
((u + 1)
3
)(u
21
+ 6u
20
+ ··· 2u + 1)
c
6
, c
9
u
3
(u
21
u
20
+ ··· + 4u + 8)
c
7
((u + 1)
3
)(u
21
4u
20
+ ··· 2u + 1)
c
8
(u
3
u
2
+ 1)(u
21
2u
20
+ ··· + u + 1)
c
10
(u
3
u
2
+ 2u 1)(u
21
+ 2u
20
+ ··· + 3u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y
3
+ 3y
2
+ 2y 1)(y
21
+ 12y
20
+ ··· + 137y 1)
c
2
, c
8
(y
3
y
2
+ 2y 1)(y
21
8y
20
+ ··· + 17y 1)
c
4
, c
7
((y 1)
3
)(y
21
6y
20
+ ··· 2y 1)
c
5
((y 1)
3
)(y
21
+ 22y
20
+ ··· + 66y 1)
c
6
, c
9
y
3
(y
21
+ 21y
20
+ ··· 176y 64)
c
10
(y
3
+ 3y
2
+ 2y 1)(y
21
24y
20
+ ··· + 17y 1)
13