12n
0112
(K12n
0112
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 12 11 6 7 8 10
Solving Sequence
7,12 4,8
3 6 11 10 1 5 2 9
c
7
c
3
c
6
c
11
c
10
c
12
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h1077612353882483u
46
+ 6277936033129932u
45
+ ··· + 3412880928878836b 505154446936889,
1.84787 × 10
15
u
46
8.27233 × 10
15
u
45
+ ··· + 3.41288 × 10
15
a 4.21925 × 10
16
,
u
47
+ 4u
46
+ ··· + 19u + 1i
I
u
2
= hb + u, u
2
+ a u + 3, u
3
u
2
+ 2u 1i
I
u
3
= h−2u
2
a au u
2
+ 5b 3a 3u + 1, a
2
+ 2u
2
+ a + 2, u
3
u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.08 × 10
15
u
46
+ 6.28 × 10
15
u
45
+ · · · + 3.41 × 10
15
b 5.05 ×
10
14
, 1.85 × 10
15
u
46
8.27 × 10
15
u
45
+ · · · + 3.41 × 10
15
a 4.22 ×
10
16
, u
47
+ 4u
46
+ · · · + 19u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
0.541439u
46
+ 2.42386u
45
+ ··· + 24.5319u + 12.3627
0.315749u
46
1.83948u
45
+ ··· 7.06067u + 0.148014
a
8
=
1
u
2
a
3
=
0.225691u
46
+ 0.584374u
45
+ ··· + 17.4712u + 12.5108
0.315749u
46
1.83948u
45
+ ··· 7.06067u + 0.148014
a
6
=
0.280491u
46
1.05919u
45
+ ··· 11.4369u 5.46550
0.0627768u
46
0.766991u
45
+ ··· + 0.136172u 0.280491
a
11
=
u
u
3
+ u
a
10
=
u
3
+ 2u
u
3
+ u
a
1
=
u
7
4u
5
4u
3
u
7
3u
5
2u
3
+ u
a
5
=
0.348010u
46
0.729833u
45
+ ··· 18.8545u 5.94845
0.0657486u
46
+ 0.160517u
45
+ ··· 0.310668u 0.351986
a
2
=
0.421710u
46
+ 1.79404u
45
+ ··· + 25.1802u + 9.15766
0.0657486u
46
0.160517u
45
+ ··· + 0.310668u + 0.351986
a
9
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1830100709424405
1706440464439418
u
46
8067984018653329
1706440464439418
u
45
+ ···
99643634186005859
3412880928878836
u
34355223541311473
3412880928878836
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 30u
46
+ ··· + 15u + 1
c
2
, c
4
u
47
4u
46
+ ··· 7u 1
c
3
, c
6
u
47
4u
46
+ ··· + 5u 1
c
5
, c
9
u
47
3u
46
+ ··· 1920u
2
+ 512
c
7
, c
8
, c
11
u
47
4u
46
+ ··· + 19u 1
c
10
u
47
+ 4u
46
+ ··· + 847u 49
c
12
u
47
22u
46
+ ··· + 8436145u + 61891
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
22y
46
+ ··· + 563y 1
c
2
, c
4
y
47
30y
46
+ ··· + 15y 1
c
3
, c
6
y
47
+ 6y
46
+ ··· + 15y 1
c
5
, c
9
y
47
+ 49y
46
+ ··· + 1966080y 262144
c
7
, c
8
, c
11
y
47
+ 38y
46
+ ··· + 299y 1
c
10
y
47
50y
46
+ ··· + 706923y 2401
c
12
y
47
78y
46
+ ··· + 77502601952059y 3830495881
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.990601
a = 0.833676
b = 0.664625
5.24020 20.8000
u = 0.786688 + 0.584594I
a = 0.577297 + 0.239191I
b = 0.688477 0.244449I
4.21325 2.69895I 16.8130 + 7.1920I
u = 0.786688 0.584594I
a = 0.577297 0.239191I
b = 0.688477 + 0.244449I
4.21325 + 2.69895I 16.8130 7.1920I
u = 0.937187 + 0.140092I
a = 1.77830 + 0.44317I
b = 1.08476 + 1.02775I
11.2714 + 9.6299I 12.05023 5.56960I
u = 0.937187 0.140092I
a = 1.77830 0.44317I
b = 1.08476 1.02775I
11.2714 9.6299I 12.05023 + 5.56960I
u = 0.909124 + 0.020827I
a = 1.61166 0.74978I
b = 1.07056 1.08227I
11.11700 + 1.76651I 12.65951 0.89834I
u = 0.909124 0.020827I
a = 1.61166 + 0.74978I
b = 1.07056 + 1.08227I
11.11700 1.76651I 12.65951 + 0.89834I
u = 0.884070 + 0.070567I
a = 1.80575 0.63524I
b = 1.10158 1.05658I
6.89137 + 3.99655I 10.09960 2.77536I
u = 0.884070 0.070567I
a = 1.80575 + 0.63524I
b = 1.10158 + 1.05658I
6.89137 3.99655I 10.09960 + 2.77536I
u = 0.066162 + 1.148650I
a = 0.853937 + 0.565919I
b = 0.908296 + 0.182917I
1.43778 0.23607I 8.00000 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.066162 1.148650I
a = 0.853937 0.565919I
b = 0.908296 0.182917I
1.43778 + 0.23607I 8.00000 + 0.I
u = 0.193279 + 1.168140I
a = 0.93146 + 1.53635I
b = 0.201370 0.733758I
0.26621 2.20233I 8.00000 + 0.I
u = 0.193279 1.168140I
a = 0.93146 1.53635I
b = 0.201370 + 0.733758I
0.26621 + 2.20233I 8.00000 + 0.I
u = 0.165090 + 1.196660I
a = 1.36966 + 0.81390I
b = 0.37394 1.40206I
5.59945 + 4.78062I 8.00000 + 0.I
u = 0.165090 1.196660I
a = 1.36966 0.81390I
b = 0.37394 + 1.40206I
5.59945 4.78062I 8.00000 + 0.I
u = 0.083039 + 1.251340I
a = 1.050290 0.729908I
b = 0.032297 + 1.293670I
6.38366 1.10832I 0
u = 0.083039 1.251340I
a = 1.050290 + 0.729908I
b = 0.032297 1.293670I
6.38366 + 1.10832I 0
u = 0.528989 + 1.159830I
a = 0.276035 0.628526I
b = 1.099140 0.886724I
8.15630 4.45150I 0
u = 0.528989 1.159830I
a = 0.276035 + 0.628526I
b = 1.099140 + 0.886724I
8.15630 + 4.45150I 0
u = 0.431113 + 1.216070I
a = 0.183252 + 0.675767I
b = 1.17095 + 0.89948I
3.36307 + 0.70782I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.431113 1.216070I
a = 0.183252 0.675767I
b = 1.17095 0.89948I
3.36307 0.70782I 0
u = 0.268673 + 1.267170I
a = 1.155430 + 0.312483I
b = 0.561623 0.268923I
2.34688 3.35469I 0
u = 0.268673 1.267170I
a = 1.155430 0.312483I
b = 0.561623 + 0.268923I
2.34688 + 3.35469I 0
u = 0.195960 + 1.323790I
a = 1.87522 1.08808I
b = 0.483549 + 0.192110I
1.76552 3.06033I 0
u = 0.195960 1.323790I
a = 1.87522 + 1.08808I
b = 0.483549 0.192110I
1.76552 + 3.06033I 0
u = 0.660594
a = 1.60556
b = 0.440165
1.60120 4.93400
u = 0.442721 + 1.267860I
a = 1.46962 0.89724I
b = 0.94426 + 1.16097I
7.25263 + 3.05957I 0
u = 0.442721 1.267860I
a = 1.46962 + 0.89724I
b = 0.94426 1.16097I
7.25263 3.05957I 0
u = 0.492547 + 1.264850I
a = 0.648333 0.236834I
b = 0.695100 + 0.386206I
1.35004 5.25916I 0
u = 0.492547 1.264850I
a = 0.648333 + 0.236834I
b = 0.695100 0.386206I
1.35004 + 5.25916I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.431930 + 1.300870I
a = 0.097552 0.602796I
b = 1.16017 0.97433I
7.00155 + 6.55990I 0
u = 0.431930 1.300870I
a = 0.097552 + 0.602796I
b = 1.16017 + 0.97433I
7.00155 6.55990I 0
u = 0.113592 + 1.383630I
a = 0.110146 0.914625I
b = 0.324059 + 0.771489I
4.86422 2.82003I 0
u = 0.113592 1.383630I
a = 0.110146 + 0.914625I
b = 0.324059 0.771489I
4.86422 + 2.82003I 0
u = 0.403708 + 1.330620I
a = 1.43895 + 0.94313I
b = 1.01510 1.16548I
2.50308 + 8.61469I 0
u = 0.403708 1.330620I
a = 1.43895 0.94313I
b = 1.01510 + 1.16548I
2.50308 8.61469I 0
u = 0.41853 + 1.38032I
a = 1.39448 0.94283I
b = 1.03069 + 1.11636I
6.4847 + 14.4827I 0
u = 0.41853 1.38032I
a = 1.39448 + 0.94283I
b = 1.03069 1.11636I
6.4847 14.4827I 0
u = 0.532405 + 0.124560I
a = 0.76238 2.70239I
b = 0.221659 + 0.420216I
2.77991 0.46414I 9.29269 10.51983I
u = 0.532405 0.124560I
a = 0.76238 + 2.70239I
b = 0.221659 0.420216I
2.77991 + 0.46414I 9.29269 + 10.51983I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.380325 + 0.322466I
a = 0.088091 0.742546I
b = 0.519940 + 0.346223I
0.572975 1.134450I 6.55719 + 6.13916I
u = 0.380325 0.322466I
a = 0.088091 + 0.742546I
b = 0.519940 0.346223I
0.572975 + 1.134450I 6.55719 6.13916I
u = 0.20471 + 1.49097I
a = 0.255203 + 0.595995I
b = 0.547663 0.662712I
2.62514 6.12394I 0
u = 0.20471 1.49097I
a = 0.255203 0.595995I
b = 0.547663 + 0.662712I
2.62514 + 6.12394I 0
u = 0.394822 + 0.084126I
a = 0.10651 + 2.29856I
b = 0.240504 + 1.222520I
2.33626 2.65352I 2.71092 + 0.17214I
u = 0.394822 0.084126I
a = 0.10651 2.29856I
b = 0.240504 1.222520I
2.33626 + 2.65352I 2.71092 0.17214I
u = 0.0592454
a = 10.7472
b = 0.523564
1.19029 8.22650
9
II. I
u
2
= hb + u, u
2
+ a u + 3, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
u
2
+ u 3
u
a
8
=
1
u
2
a
3
=
u
2
3
u
a
6
=
u
u
2
a
11
=
u
u
2
u + 1
a
10
=
u
2
+ 1
u
2
u + 1
a
1
=
1
0
a
5
=
u
u
2
a
2
=
u
2
u 2
u
2
a
9
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
2
+ 11u 24
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
8
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
, c
10
, c
12
u
3
u
2
+ 1
c
5
, c
9
u
3
c
6
, c
11
u
3
+ u
2
+ 2u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
8
, c
11
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
10
c
12
y
3
y
2
+ 2y 1
c
5
, c
9
y
3
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.122560 + 0.744862I
b = 0.215080 1.307140I
6.04826 5.65624I 1.68581 + 7.63120I
u = 0.215080 1.307140I
a = 1.122560 0.744862I
b = 0.215080 + 1.307140I
6.04826 + 5.65624I 1.68581 7.63120I
u = 0.569840
a = 2.75488
b = 0.569840
2.22691 21.6280
13
III.
I
u
3
= h−2u
2
a au u
2
+ 5b 3a 3u + 1, a
2
+ 2u
2
+ a + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
a
2
5
u
2
a +
1
5
u
2
+ ··· +
3
5
a
1
5
a
8
=
1
u
2
a
3
=
2
5
u
2
a +
1
5
u
2
+ ··· +
8
5
a
1
5
2
5
u
2
a +
1
5
u
2
+ ··· +
3
5
a
1
5
a
6
=
1
5
u
2
a +
8
5
u
2
+ ··· +
4
5
a +
17
5
1
5
u
2
a +
2
5
u
2
+ ··· +
1
5
a +
8
5
a
11
=
u
u
2
u + 1
a
10
=
u
2
+ 1
u
2
u + 1
a
1
=
1
0
a
5
=
1
5
u
2
a +
8
5
u
2
+ ··· +
4
5
a +
17
5
1
5
u
2
a +
2
5
u
2
+ ··· +
1
5
a +
8
5
a
2
=
2u
2
+ a u + 3
1
5
u
2
a +
2
5
u
2
+ ··· +
1
5
a +
8
5
a
9
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
5
u
2
a +
24
5
au
21
5
u
2
28
5
a +
2
5
u
74
5
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
8
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
, c
10
, c
12
(u
3
u
2
+ 1)
2
c
5
, c
9
u
6
c
6
, c
11
(u
3
+ u
2
+ 2u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
8
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
10
c
12
(y
3
y
2
+ 2y 1)
2
c
5
, c
9
y
6
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.824718 0.424452I
b = 0.215080 + 1.307140I
6.04826 4.98605 + 1.29886I
u = 0.215080 + 1.307140I
a = 1.82472 + 0.42445I
b = 0.569840
1.91067 2.82812I 11.5625 9.3388I
u = 0.215080 1.307140I
a = 0.824718 + 0.424452I
b = 0.215080 1.307140I
6.04826 4.98605 1.29886I
u = 0.215080 1.307140I
a = 1.82472 0.42445I
b = 0.569840
1.91067 + 2.82812I 11.5625 + 9.3388I
u = 0.569840
a = 0.50000 + 1.54901I
b = 0.215080 + 1.307140I
1.91067 + 2.82812I 13.9515 6.1477I
u = 0.569840
a = 0.50000 1.54901I
b = 0.215080 1.307140I
1.91067 2.82812I 13.9515 + 6.1477I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
u
2
+ 2u 1)
3
)(u
47
+ 30u
46
+ ··· + 15u + 1)
c
2
((u
3
+ u
2
1)
3
)(u
47
4u
46
+ ··· 7u 1)
c
3
((u
3
u
2
+ 2u 1)
3
)(u
47
4u
46
+ ··· + 5u 1)
c
4
((u
3
u
2
+ 1)
3
)(u
47
4u
46
+ ··· 7u 1)
c
5
, c
9
u
9
(u
47
3u
46
+ ··· 1920u
2
+ 512)
c
6
((u
3
+ u
2
+ 2u + 1)
3
)(u
47
4u
46
+ ··· + 5u 1)
c
7
, c
8
((u
3
u
2
+ 2u 1)
3
)(u
47
4u
46
+ ··· + 19u 1)
c
10
((u
3
u
2
+ 1)
3
)(u
47
+ 4u
46
+ ··· + 847u 49)
c
11
((u
3
+ u
2
+ 2u + 1)
3
)(u
47
4u
46
+ ··· + 19u 1)
c
12
((u
3
u
2
+ 1)
3
)(u
47
22u
46
+ ··· + 8436145u + 61891)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
22y
46
+ ··· + 563y 1)
c
2
, c
4
((y
3
y
2
+ 2y 1)
3
)(y
47
30y
46
+ ··· + 15y 1)
c
3
, c
6
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
+ 6y
46
+ ··· + 15y 1)
c
5
, c
9
y
9
(y
47
+ 49y
46
+ ··· + 1966080y 262144)
c
7
, c
8
, c
11
((y
3
+ 3y
2
+ 2y 1)
3
)(y
47
+ 38y
46
+ ··· + 299y 1)
c
10
((y
3
y
2
+ 2y 1)
3
)(y
47
50y
46
+ ··· + 706923y 2401)
c
12
(y
3
y
2
+ 2y 1)
3
· (y
47
78y
46
+ ··· + 77502601952059y 3830495881)
19