12n
0115
(K12n
0115
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 11 12 5 7 8 9
Solving Sequence
7,10
11 8
4,12
3 6 5 2 1 9
c
10
c
7
c
11
c
3
c
6
c
5
c
2
c
1
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h152u
13
2309u
12
+ ··· + 4348b + 7399, 4859u
13
+ 22201u
12
+ ··· + 4348a 33463,
u
14
5u
13
+ 5u
12
+ 10u
11
13u
10
15u
9
5u
8
+ 77u
7
45u
6
64u
5
+ 60u
4
+ 21u
3
41u
2
+ 14u 1i
I
u
2
= h2a
2
u a
2
+ au + b a + 2u, a
3
a
2
u a
2
+ 2au + 4a 2u 3, u
2
+ u 1i
I
u
3
= hu
2
+ b u 2, a, u
3
u
2
2u + 1i
* 3 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h152u
13
2309u
12
+ · · · + 4348b + 7399, 4859u
13
+ 22201u
12
+
· · · + 4348a 33463, u
14
5u
13
+ · · · + 14u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
4
=
1.11753u
13
5.10603u
12
+ ··· 32.0340u + 7.69618
0.0349586u
13
+ 0.531049u
12
+ ··· + 9.42157u 1.70170
a
12
=
u
2
+ 1
u
4
2u
2
a
3
=
1.11753u
13
5.10603u
12
+ ··· 32.0340u + 7.69618
0.393514u
13
+ 2.11431u
12
+ ··· + 15.0465u 2.18330
a
6
=
0.332567u
13
1.32498u
12
+ ··· 10.1125u + 3.24448
0.299908u
13
+ 1.56900u
12
+ ··· + 9.10350u 1.05934
a
5
=
0.632475u
13
2.89397u
12
+ ··· 19.2160u + 4.30382
0.299908u
13
+ 1.56900u
12
+ ··· + 9.10350u 1.05934
a
2
=
0.632475u
13
2.89397u
12
+ ··· 19.2160u + 4.30382
0.00666973u
13
+ 0.252300u
12
+ ··· + 7.25345u 1.30198
a
1
=
u
4
+ 3u
2
1
u
6
4u
4
+ 3u
2
a
9
=
u
3
+ 2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11021
2174
u
13
+
53061
2174
u
12
+ ··· +
369277
2174
u
54785
2174
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 18u
13
+ ··· + 1086u + 1
c
2
, c
4
u
14
6u
13
+ ··· 34u 1
c
3
, c
6
u
14
3u
13
+ ··· 28u + 8
c
5
, c
9
u
14
+ 2u
13
+ ··· + 352u + 64
c
7
, c
8
, c
10
c
11
, c
12
u
14
5u
13
+ ··· + 14u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
38y
13
+ ··· 1163634y + 1
c
2
, c
4
y
14
18y
13
+ ··· 1086y + 1
c
3
, c
6
y
14
15y
13
+ ··· 2512y + 64
c
5
, c
9
y
14
+ 30y
13
+ ··· 87040y + 4096
c
7
, c
8
, c
10
c
11
, c
12
y
14
15y
13
+ ··· 114y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.847247 + 0.340274I
a = 1.07919 + 1.10825I
b = 0.214655 + 0.076845I
4.35404 + 2.18891I 7.66563 + 1.41199I
u = 0.847247 0.340274I
a = 1.07919 1.10825I
b = 0.214655 0.076845I
4.35404 2.18891I 7.66563 1.41199I
u = 0.683451 + 0.439394I
a = 0.372092 1.119180I
b = 0.54173 1.61181I
1.117970 + 0.457834I 6.03602 2.75865I
u = 0.683451 0.439394I
a = 0.372092 + 1.119180I
b = 0.54173 + 1.61181I
1.117970 0.457834I 6.03602 + 2.75865I
u = 1.293890 + 0.440522I
a = 0.947194 0.804395I
b = 0.03997 1.45852I
1.31890 + 3.26489I 6.50646 2.86357I
u = 1.293890 0.440522I
a = 0.947194 + 0.804395I
b = 0.03997 + 1.45852I
1.31890 3.26489I 6.50646 + 2.86357I
u = 0.79945 + 1.23640I
a = 0.51219 + 1.76331I
b = 0.10570 + 1.90296I
13.41460 4.06288I 3.37939 + 1.99626I
u = 0.79945 1.23640I
a = 0.51219 1.76331I
b = 0.10570 1.90296I
13.41460 + 4.06288I 3.37939 1.99626I
u = 0.485579
a = 0.359180
b = 0.426392
0.739738 13.5200
u = 1.59630
a = 0.385525
b = 1.79529
7.97868 20.7070
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.74684 + 0.37580I
a = 0.709908 + 0.913168I
b = 0.34316 + 1.93469I
5.06340 + 10.16720I 5.53186 3.95031I
u = 1.74684 0.37580I
a = 0.709908 0.913168I
b = 0.34316 1.93469I
5.06340 10.16720I 5.53186 + 3.95031I
u = 1.85818
a = 0.512193
b = 0.340829
15.4110 1.86040
u = 0.0975686
a = 4.86506
b = 0.854160
1.21825 10.3270
6
II.
I
u
2
= h2a
2
ua
2
+au+b a + 2u, a
3
a
2
ua
2
+2au+4a 2u 3, u
2
+u1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
8
=
u
u + 1
a
4
=
a
2a
2
u + a
2
au + a 2u
a
12
=
u
u
a
3
=
a
2a
2
u + a
2
2u
a
6
=
a
2
u
0
a
5
=
a
2
u
0
a
2
=
a
2
u
2a
2
u + a
2
2u
a
1
=
0
u
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 19a
2
u 13a
2
+ 9au a + 8u 9
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
9
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
(u
2
u 1)
3
c
10
, c
11
, c
12
(u
2
+ u 1)
3
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
9
y
6
c
7
, c
8
, c
10
c
11
, c
12
(y
2
3y + 1)
3
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.922021
b = 1.08457
0.126494 0.918090
u = 0.618034
a = 0.34801 + 2.11500I
b = 0.075747 + 0.460350I
4.01109 2.82812I 3.00413 + 7.79836I
u = 0.618034
a = 0.34801 2.11500I
b = 0.075747 0.460350I
4.01109 + 2.82812I 3.00413 7.79836I
u = 1.61803
a = 0.132927 + 0.807858I
b = 0.198308 + 1.205210I
11.90680 + 2.82812I 7.89941 3.17745I
u = 1.61803
a = 0.132927 0.807858I
b = 0.198308 1.205210I
11.90680 2.82812I 7.89941 + 3.17745I
u = 1.61803
a = 0.352181
b = 2.83945
7.76919 21.8890
10
III. I
u
3
= hu
2
+ b u 2, a, u
3
u
2
2u + 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
2
u + 1
a
4
=
0
u
2
+ u + 2
a
12
=
u
2
+ 1
u
2
+ u 1
a
3
=
0
u
2
+ u + 2
a
6
=
0
u
a
5
=
u
u
a
2
=
u
u
2
+ 2
a
1
=
u
u
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 7u + 30
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
, c
7
, c
8
u
3
+ u
2
2u 1
c
9
, c
10
, c
11
c
12
u
3
u
2
2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.24698
a = 0
b = 0.801938
4.69981 8.83150
u = 0.445042
a = 0
b = 2.24698
0.939962 31.5310
u = 1.80194
a = 0
b = 0.554958
15.9794 16.6380
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
3
u
2
+ 2u 1)
2
(u
14
+ 18u
13
+ ··· + 1086u + 1)
c
2
((u 1)
3
)(u
3
+ u
2
1)
2
(u
14
6u
13
+ ··· 34u 1)
c
3
u
3
(u
3
u
2
+ 2u 1)
2
(u
14
3u
13
+ ··· 28u + 8)
c
4
((u + 1)
3
)(u
3
u
2
+ 1)
2
(u
14
6u
13
+ ··· 34u 1)
c
5
u
6
(u
3
+ u
2
2u 1)(u
14
+ 2u
13
+ ··· + 352u + 64)
c
6
u
3
(u
3
+ u
2
+ 2u + 1)
2
(u
14
3u
13
+ ··· 28u + 8)
c
7
, c
8
((u
2
u 1)
3
)(u
3
+ u
2
2u 1)(u
14
5u
13
+ ··· + 14u 1)
c
9
u
6
(u
3
u
2
2u + 1)(u
14
+ 2u
13
+ ··· + 352u + 64)
c
10
, c
11
, c
12
((u
2
+ u 1)
3
)(u
3
u
2
2u + 1)(u
14
5u
13
+ ··· + 14u 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)
2
(y
14
38y
13
+ ··· 1163634y + 1)
c
2
, c
4
((y 1)
3
)(y
3
y
2
+ 2y 1)
2
(y
14
18y
13
+ ··· 1086y + 1)
c
3
, c
6
y
3
(y
3
+ 3y
2
+ 2y 1)
2
(y
14
15y
13
+ ··· 2512y + 64)
c
5
, c
9
y
6
(y
3
5y
2
+ 6y 1)(y
14
+ 30y
13
+ ··· 87040y + 4096)
c
7
, c
8
, c
10
c
11
, c
12
((y
2
3y + 1)
3
)(y
3
5y
2
+ 6y 1)(y
14
15y
13
+ ··· 114y + 1)
16