12n
0116
(K12n
0116
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 10 3 12 11 5 7 8 9
Solving Sequence
5,9
10
3,6
7 11 2 1 4 8 12
c
9
c
5
c
6
c
10
c
2
c
1
c
4
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.49041 × 10
48
u
40
1.63923 × 10
48
u
39
+ ··· + 4.94994 × 10
48
b + 1.35928 × 10
48
,
1.49041 × 10
48
u
40
1.63923 × 10
48
u
39
+ ··· + 4.94994 × 10
48
a + 1.35928 × 10
48
, u
41
+ 2u
40
+ ··· u 1i
I
u
2
= h−u
5
+ u
4
+ 3u
3
2u
2
+ b u 1, u
5
+ u
4
+ 3u
3
2u
2
+ a 2u 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.49×10
48
u
40
1.64×10
48
u
39
+· · ·+4.95×10
48
b+1.36×10
48
, 1.49×
10
48
u
40
1.64×10
48
u
39
+· · ·+4.95×10
48
a+1.36×10
48
, u
41
+2u
40
+· · ·u1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
0.301096u
40
+ 0.331162u
39
+ ··· + 2.34511u 0.274605
0.301096u
40
+ 0.331162u
39
+ ··· + 3.34511u 0.274605
a
6
=
u
u
3
+ u
a
7
=
0.501619u
40
0.639447u
39
+ ··· + 0.896473u + 0.455440
0.458393u
40
0.639616u
39
+ ··· + 0.799469u + 0.637044
a
11
=
0.205384u
40
0.351951u
39
+ ··· + 0.606975u + 1.47006
0.559530u
40
0.970963u
39
+ ··· + 1.39792u + 1.11199
a
2
=
0.301096u
40
+ 0.331162u
39
+ ··· + 2.34511u 0.274605
0.0224886u
40
0.0444496u
39
+ ··· + 3.31504u 0.00357471
a
1
=
0.110835u
40
0.0229094u
39
+ ··· 0.234831u + 0.545396
0.390784u
40
0.662356u
39
+ ··· + 0.661642u + 1.00084
a
4
=
0.257870u
40
+ 0.331331u
39
+ ··· + 2.44211u 0.456209
0.313467u
40
+ 0.443108u
39
+ ··· + 3.39872u 0.542830
a
8
=
0.659770u
40
1.09530u
39
+ ··· + 1.32120u + 1.69134
0.119568u
40
+ 0.0303721u
39
+ ··· 0.186514u 1.02623
a
12
=
0.501619u
40
+ 0.639447u
39
+ ··· 0.896473u 0.455440
0.390784u
40
0.662356u
39
+ ··· + 0.661642u + 1.00084
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.91398u
40
6.25021u
39
+ ··· 14.4903u + 31.2535
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 47u
40
+ ··· + 296u + 1
c
2
, c
4
u
41
7u
40
+ ··· 12u + 1
c
3
, c
6
u
41
+ 7u
40
+ ··· + 640u 64
c
5
, c
9
u
41
+ 2u
40
+ ··· u 1
c
7
, c
8
, c
11
u
41
+ 2u
40
+ ··· + u + 1
c
10
, c
12
u
41
2u
40
+ ··· 47u + 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
99y
40
+ ··· + 111528y 1
c
2
, c
4
y
41
47y
40
+ ··· + 296y 1
c
3
, c
6
y
41
+ 39y
40
+ ··· + 90112y 4096
c
5
, c
9
y
41
+ 42y
39
+ ··· + 7y 1
c
7
, c
8
, c
11
y
41
+ 36y
40
+ ··· + 7y 1
c
10
, c
12
y
41
12y
40
+ ··· 2041y 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.546127 + 0.811291I
a = 0.743645 1.202480I
b = 0.197518 0.391191I
4.83591 7.62929I 1.63110 + 8.21040I
u = 0.546127 0.811291I
a = 0.743645 + 1.202480I
b = 0.197518 + 0.391191I
4.83591 + 7.62929I 1.63110 8.21040I
u = 0.559771 + 0.753240I
a = 0.624352 1.085930I
b = 0.064581 0.332685I
0.18158 + 4.25829I 7.22708 8.04646I
u = 0.559771 0.753240I
a = 0.624352 + 1.085930I
b = 0.064581 + 0.332685I
0.18158 4.25829I 7.22708 + 8.04646I
u = 0.664122 + 0.603424I
a = 0.468587 0.663053I
b = 0.195535 0.059628I
2.14123 1.43316I 6.02200 + 3.64151I
u = 0.664122 0.603424I
a = 0.468587 + 0.663053I
b = 0.195535 + 0.059628I
2.14123 + 1.43316I 6.02200 3.64151I
u = 0.350975 + 0.790999I
a = 0.39756 1.62860I
b = 0.046582 0.837603I
6.73300 + 0.22938I 2.25086 2.33731I
u = 0.350975 0.790999I
a = 0.39756 + 1.62860I
b = 0.046582 + 0.837603I
6.73300 0.22938I 2.25086 + 2.33731I
u = 0.087719 + 0.850756I
a = 0.12108 2.10269I
b = 0.033358 1.251940I
8.03114 + 3.86698I 3.56668 3.96784I
u = 0.087719 0.850756I
a = 0.12108 + 2.10269I
b = 0.033358 + 1.251940I
8.03114 3.86698I 3.56668 + 3.96784I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.445566 + 0.616611I
a = 0.112439 1.137990I
b = 0.333128 0.521377I
1.53709 1.40851I 1.34634 + 3.01002I
u = 0.445566 0.616611I
a = 0.112439 + 1.137990I
b = 0.333128 + 0.521377I
1.53709 + 1.40851I 1.34634 3.01002I
u = 0.090722 + 0.752674I
a = 0.05605 1.99845I
b = 0.034673 1.245770I
2.86548 1.28813I 1.16839 + 4.84793I
u = 0.090722 0.752674I
a = 0.05605 + 1.99845I
b = 0.034673 + 1.245770I
2.86548 + 1.28813I 1.16839 4.84793I
u = 0.527293 + 0.436682I
a = 0.973519 0.176954I
b = 1.50081 + 0.25973I
4.01492 + 3.79256I 2.77393 0.06472I
u = 0.527293 0.436682I
a = 0.973519 + 0.176954I
b = 1.50081 0.25973I
4.01492 3.79256I 2.77393 + 0.06472I
u = 0.468495 + 0.464998I
a = 0.622134 0.271062I
b = 1.090630 + 0.193936I
0.599224 0.610593I 8.50615 0.01136I
u = 0.468495 0.464998I
a = 0.622134 + 0.271062I
b = 1.090630 0.193936I
0.599224 + 0.610593I 8.50615 + 0.01136I
u = 0.325958 + 0.548034I
a = 0.267538 + 0.084708I
b = 0.593496 + 0.632743I
2.79420 2.18222I 4.51636 + 3.99594I
u = 0.325958 0.548034I
a = 0.267538 0.084708I
b = 0.593496 0.632743I
2.79420 + 2.18222I 4.51636 3.99594I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.397250 + 0.182037I
a = 0.506275 0.004273I
b = 0.890974 + 0.177764I
2.57061 + 4.43167I 14.03660 + 0.I
u = 1.397250 0.182037I
a = 0.506275 + 0.004273I
b = 0.890974 0.177764I
2.57061 4.43167I 14.03660 + 0.I
u = 1.41231
a = 0.496036
b = 0.916272
6.54065 18.5250
u = 0.487776 + 0.155470I
a = 2.02925 0.39422I
b = 2.51703 0.23875I
4.99926 + 2.47497I 10.9995 16.9397I
u = 0.487776 0.155470I
a = 2.02925 + 0.39422I
b = 2.51703 + 0.23875I
4.99926 2.47497I 10.9995 + 16.9397I
u = 0.497461
a = 0.110298
b = 0.387162
0.683544 14.8150
u = 1.05090 + 1.14678I
a = 0.504687 + 0.968425I
b = 0.54621 + 2.11520I
11.9065 13.7324I 0
u = 1.05090 1.14678I
a = 0.504687 0.968425I
b = 0.54621 2.11520I
11.9065 + 13.7324I 0
u = 1.05595 + 1.16152I
a = 0.501764 + 0.917028I
b = 0.55418 + 2.07855I
6.55369 + 9.57234I 0
u = 1.05595 1.16152I
a = 0.501764 0.917028I
b = 0.55418 2.07855I
6.55369 9.57234I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.10127 + 1.14227I
a = 0.673483 + 0.861835I
b = 0.42779 + 2.00411I
16.5464 + 4.1585I 0
u = 1.10127 1.14227I
a = 0.673483 0.861835I
b = 0.42779 2.00411I
16.5464 4.1585I 0
u = 1.07763 + 1.17451I
a = 0.535143 + 0.849624I
b = 0.54248 + 2.02413I
8.52808 4.96231I 0
u = 1.07763 1.17451I
a = 0.535143 0.849624I
b = 0.54248 2.02413I
8.52808 + 4.96231I 0
u = 1.16301 + 1.12527I
a = 0.754065 + 0.641582I
b = 0.40895 + 1.76685I
11.60780 + 5.44383I 0
u = 1.16301 1.12527I
a = 0.754065 0.641582I
b = 0.40895 1.76685I
11.60780 5.44383I 0
u = 0.373875
a = 2.77728
b = 3.15116
0.771990 64.9410
u = 1.13639 + 1.17348I
a = 0.623222 + 0.717077I
b = 0.51317 + 1.89056I
8.37413 3.52292I 0
u = 1.13639 1.17348I
a = 0.623222 0.717077I
b = 0.51317 1.89056I
8.37413 + 3.52292I 0
u = 1.16288 + 1.15013I
a = 0.687885 + 0.655673I
b = 0.47499 + 1.80580I
6.27214 1.18033I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16288 1.15013I
a = 0.687885 0.655673I
b = 0.47499 1.80580I
6.27214 + 1.18033I 0
9
II. I
u
2
= h−u
5
+ u
4
+ 3u
3
2u
2
+ b u 1, u
5
+ u
4
+ 3u
3
2u
2
+ a
2u 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
u
5
u
4
3u
3
+ 2u
2
+ u + 1
a
6
=
u
u
3
+ u
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
u
5
u
4
3u
3
+ 2u
2
+ 1
a
1
=
0
u
a
4
=
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
u
5
u
4
3u
3
+ 2u
2
+ u + 1
a
8
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
5
+ 3u
4
+ 19u
3
5u
2
8u 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
7
, c
8
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
c
9
, c
10
, c
12
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
11
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
9
, c
10
c
12
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
8
, c
11
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.858925 1.001920I
b = 0.36575 1.57721I
4.60518 1.97241I 3.78159 + 4.50121I
u = 0.493180 0.575288I
a = 0.858925 + 1.001920I
b = 0.36575 + 1.57721I
4.60518 + 1.97241I 3.78159 4.50121I
u = 0.483672
a = 2.06752
b = 1.58384
0.906083 8.91030
u = 1.52087 + 0.16310I
a = 0.650045 0.069710I
b = 0.870821 0.232805I
2.05064 + 4.59213I 0.56679 5.39767I
u = 1.52087 0.16310I
a = 0.650045 + 0.069710I
b = 0.870821 + 0.232805I
2.05064 4.59213I 0.56679 + 5.39767I
u = 1.53904
a = 0.649754
b = 0.889289
6.01515 2.48070
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
41
+ 47u
40
+ ··· + 296u + 1)
c
2
((u 1)
6
)(u
41
7u
40
+ ··· 12u + 1)
c
3
, c
6
u
6
(u
41
+ 7u
40
+ ··· + 640u 64)
c
4
((u + 1)
6
)(u
41
7u
40
+ ··· 12u + 1)
c
5
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
41
+ 2u
40
+ ··· u 1)
c
7
, c
8
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
41
+ 2u
40
+ ··· + u + 1)
c
9
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
41
+ 2u
40
+ ··· u 1)
c
10
, c
12
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
41
2u
40
+ ··· 47u + 17)
c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
41
+ 2u
40
+ ··· + u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
41
99y
40
+ ··· + 111528y 1)
c
2
, c
4
((y 1)
6
)(y
41
47y
40
+ ··· + 296y 1)
c
3
, c
6
y
6
(y
41
+ 39y
40
+ ··· + 90112y 4096)
c
5
, c
9
(y
6
7y
5
+ ··· 5y + 1)(y
41
+ 42y
39
+ ··· + 7y 1)
c
7
, c
8
, c
11
(y
6
+ 5y
5
+ ··· 5y + 1)(y
41
+ 36y
40
+ ··· + 7y 1)
c
10
, c
12
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
41
12y
40
+ ··· 2041y 289)
15