12n
0120
(K12n
0120
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 10 3 12 11 5 9 7 8
Solving Sequence
5,9
10
3,6
7 11 2 1 4 8 12
c
9
c
5
c
6
c
10
c
2
c
1
c
4
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h15121u
16
24215u
15
+ ··· + 18155b 26228, 15121u
16
24215u
15
+ ··· + 18155a 26228,
u
17
2u
16
+ 2u
15
+ 7u
13
14u
12
+ 14u
11
2u
10
+ 7u
9
14u
8
+ 14u
7
12u
6
2u
2
u + 1i
I
u
2
= h−u
7
+ u
6
+ u
5
2u
4
u
3
+ 2u
2
+ b + u 2, u
7
+ u
6
+ u
5
2u
4
u
3
+ 2u
2
+ a 2,
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h15121u
16
24215u
15
+ · · · + 18155b 26228, 15121u
16
24215u
15
+ · · · + 18155a 26228, u
17
2u
16
+ · · · u + 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
0.832884u
16
+ 1.33379u
15
+ ··· + 1.24985u + 1.44467
0.832884u
16
+ 1.33379u
15
+ ··· + 2.24985u + 1.44467
a
6
=
u
u
3
+ u
a
7
=
0.102561u
16
+ 0.104654u
15
+ ··· 0.0345359u 0.615037
0.0863674u
16
+ 0.0881300u
15
+ ··· 0.0290829u 0.623189
a
11
=
u
2
+ 1
u
2
a
2
=
0.832884u
16
+ 1.33379u
15
+ ··· + 1.24985u + 1.44467
0.830185u
16
+ 1.33655u
15
+ ··· + 1.74894u + 1.11270
a
1
=
0.368438u
16
0.644451u
15
+ ··· + 0.212669u 0.317929
0.471000u
16
0.539796u
15
+ ··· + 0.178133u 0.932966
a
4
=
0.816690u
16
+ 1.35032u
15
+ ··· + 1.24440u + 1.45282
0.719526u
16
+ 1.44946u
15
+ ··· + 2.21168u + 1.50174
a
8
=
u
4
u
2
+ 1
u
4
a
12
=
0.167337u
16
0.170752u
15
+ ··· + 0.0563481u + 0.582429
0.140347u
16
0.143211u
15
+ ··· + 0.0472597u 0.737318
(ii) Obstruction class = 1
(iii) Cusp Shapes =
116556
18155
u
16
+
32086
3631
u
15
+ ··· +
186341
18155
u +
375193
18155
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 37u
16
+ ··· + 129u + 1
c
2
, c
4
u
17
9u
16
+ ··· 9u + 1
c
3
, c
6
u
17
+ 3u
16
+ ··· + 1664u 256
c
5
, c
9
u
17
+ 2u
16
+ ··· u 1
c
7
, c
11
, c
12
u
17
+ 2u
16
+ ··· u + 1
c
8
, c
10
u
17
+ 18u
15
+ ··· + 5u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
169y
16
+ ··· + 16813y 1
c
2
, c
4
y
17
37y
16
+ ··· + 129y 1
c
3
, c
6
y
17
+ 51y
16
+ ··· + 835584y 65536
c
5
, c
9
y
17
+ 18y
15
+ ··· + 5y 1
c
7
, c
11
, c
12
y
17
12y
16
+ ··· + 5y 1
c
8
, c
10
y
17
+ 36y
16
+ ··· + 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.01926
a = 0.421975
b = 0.597288
5.87185 17.0960
u = 0.814269 + 0.697849I
a = 0.772298 0.496323I
b = 0.041970 + 0.201526I
1.96725 4.89234I 8.35716 + 5.36349I
u = 0.814269 0.697849I
a = 0.772298 + 0.496323I
b = 0.041970 0.201526I
1.96725 + 4.89234I 8.35716 5.36349I
u = 0.151212 + 0.886118I
a = 0.24895 2.10381I
b = 0.097735 1.217690I
2.98302 + 1.89910I 0.81624 3.73789I
u = 0.151212 0.886118I
a = 0.24895 + 2.10381I
b = 0.097735 + 1.217690I
2.98302 1.89910I 0.81624 + 3.73789I
u = 0.524511 + 0.603470I
a = 0.232214 0.919977I
b = 0.292297 0.316506I
1.41487 + 1.50880I 1.51941 3.79939I
u = 0.524511 0.603470I
a = 0.232214 + 0.919977I
b = 0.292297 + 0.316506I
1.41487 1.50880I 1.51941 + 3.79939I
u = 0.413009 + 0.524274I
a = 0.410879 + 0.002963I
b = 0.823888 + 0.527237I
1.40326 + 0.77610I 7.08751 + 0.48404I
u = 0.413009 0.524274I
a = 0.410879 0.002963I
b = 0.823888 0.527237I
1.40326 0.77610I 7.08751 0.48404I
u = 0.568174
a = 0.153918
b = 0.414256
0.739304 14.0850
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.471408
a = 2.32178
b = 2.79318
0.391449 30.6130
u = 1.08781 + 1.09421I
a = 0.81831 + 1.23483I
b = 0.26950 + 2.32904I
17.0915 + 9.8759I 4.86349 4.59062I
u = 1.08781 1.09421I
a = 0.81831 1.23483I
b = 0.26950 2.32904I
17.0915 9.8759I 4.86349 + 4.59062I
u = 1.09696 + 1.09725I
a = 0.98973 + 1.18652I
b = 0.10723 + 2.28377I
18.1033 4.0499I 2.18495 + 1.91746I
u = 1.09696 1.09725I
a = 0.98973 1.18652I
b = 0.10723 2.28377I
18.1033 + 4.0499I 2.18495 1.91746I
u = 1.09946 + 1.09842I
a = 1.07854 + 1.01904I
b = 0.02092 + 2.11746I
17.0762 1.7937I 4.77435 + 0.71535I
u = 1.09946 1.09842I
a = 1.07854 1.01904I
b = 0.02092 2.11746I
17.0762 + 1.7937I 4.77435 0.71535I
6
II. I
u
2
= h−u
7
+ u
6
+ u
5
2u
4
u
3
+ 2u
2
+ b + u 2, u
7
+ u
6
+ u
5
2u
4
u
3
+ 2u
2
+ a 2, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
+ 2
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
u + 2
a
6
=
u
u
3
+ u
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
2
a
2
=
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
+ 2
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
2u + 2
a
1
=
0
u
a
4
=
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
+ 2
u
7
u
6
u
5
+ 2u
4
+ u
3
2u
2
u + 2
a
8
=
u
4
u
2
+ 1
u
4
a
12
=
u
6
+ u
4
2u
2
+ 1
u
7
u
6
2u
5
+ u
4
+ 2u
3
2u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
+ 2u
6
4u
4
3u
3
+ u
2
+ 1
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
7
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
8
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
9
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
10
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
11
, c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
9
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
7
, c
11
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
8
, c
10
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.663977 0.849844I
b = 0.09311 1.58052I
0.604279 1.131230I 5.26238 + 0.22273I
u = 0.570868 0.730671I
a = 0.663977 + 0.849844I
b = 0.09311 + 1.58052I
0.604279 + 1.131230I 5.26238 0.22273I
u = 0.855237 + 0.665892I
a = 0.727959 0.566792I
b = 0.127279 1.232690I
3.80435 2.57849I 2.12884 + 3.87967I
u = 0.855237 0.665892I
a = 0.727959 + 0.566792I
b = 0.127279 + 1.232690I
3.80435 + 2.57849I 2.12884 3.87967I
u = 1.09818
a = 0.910598
b = 0.187581
4.85780 7.72210
u = 1.031810 + 0.655470I
a = 0.690511 0.438656I
b = 0.341297 1.094130I
0.73474 + 6.44354I 7.14098 6.66742I
u = 1.031810 0.655470I
a = 0.690511 + 0.438656I
b = 0.341297 + 1.094130I
0.73474 6.44354I 7.14098 + 6.66742I
u = 0.603304
a = 1.65754
b = 1.05424
0.799899 0.213560
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
17
+ 37u
16
+ ··· + 129u + 1)
c
2
((u 1)
8
)(u
17
9u
16
+ ··· 9u + 1)
c
3
, c
6
u
8
(u
17
+ 3u
16
+ ··· + 1664u 256)
c
4
((u + 1)
8
)(u
17
9u
16
+ ··· 9u + 1)
c
5
(u
8
+ u
7
+ ··· 2u 1)(u
17
+ 2u
16
+ ··· u 1)
c
7
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)(u
17
+ 2u
16
+ ··· u + 1)
c
8
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
17
+ 18u
15
+ ··· + 5u 1)
c
9
(u
8
u
7
+ ··· + 2u 1)(u
17
+ 2u
16
+ ··· u 1)
c
10
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
17
+ 18u
15
+ ··· + 5u 1)
c
11
, c
12
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
17
+ 2u
16
+ ··· u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
8
)(y
17
169y
16
+ ··· + 16813y 1)
c
2
, c
4
((y 1)
8
)(y
17
37y
16
+ ··· + 129y 1)
c
3
, c
6
y
8
(y
17
+ 51y
16
+ ··· + 835584y 65536)
c
5
, c
9
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
17
+ 18y
15
+ ··· + 5y 1)
c
7
, c
11
, c
12
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
17
12y
16
+ ··· + 5y 1)
c
8
, c
10
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
17
+ 36y
16
+ ··· + 17y 1)
12