10
136
(K10n
3
)
A knot diagram
1
Linearized knot diagam
9 1 7 3 10 4 5 2 5 3
Solving Sequence
3,10
1
2,6
5 4 7 8 9
c
10
c
2
c
5
c
4
c
6
c
7
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
4
u
3
+ 6u
2
+ 2b 3u 1, u
4
u
3
+ 6u
2
+ 2a 3u + 1, u
5
u
4
+ 5u
3
3u
2
u + 1i
I
u
2
= hb, a + 1, u
2
u + 1i
I
u
3
= h−7u
5
+ 4u
4
41u
3
+ 14u
2
+ 23b 57u 18, 32u
5
+ 15u
4
194u
3
+ 110u
2
+ 23a 254u 10,
u
6
+ 6u
4
u
3
+ 7u
2
+ 3u + 1i
I
u
4
= hb, a u, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 15 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
4
u
3
+6u
2
+2b3u1, u
4
u
3
+6u
2
+2a3u+1, u
5
u
4
+5u
3
3u
2
u+1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
2
=
u
u
3
+ u
a
6
=
1
2
u
4
+
1
2
u
3
+ ··· +
3
2
u
1
2
1
2
u
4
+
1
2
u
3
+ ··· +
3
2
u +
1
2
a
5
=
1
1
2
u
4
+
1
2
u
3
+ ··· +
3
2
u +
1
2
a
4
=
1
1
2
u
4
+
1
2
u
3
+ ··· +
3
2
u +
1
2
a
7
=
u
4
+
1
2
u
3
5u
2
+ u +
1
2
u
a
8
=
u
4
+ u
3
5u
2
+ 2u
1
2
u
3
u
2
+ 2u
1
2
a
9
=
1
2
u
4
1
2
u
3
+ 3u
2
3
2
u +
1
2
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
4u
3
+ 24u
2
9u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
5
+ u
4
+ u
3
u
2
+ u 1
c
2
, c
4
, c
10
u
5
+ u
4
+ 5u
3
+ 3u
2
u 1
c
5
, c
9
u
5
+ 5u
4
+ 6u
3
4u
2
8u 4
c
7
u
5
4u
4
+ 15u
3
10u
2
u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
5
+ y
4
+ 5y
3
+ 3y
2
y 1
c
2
, c
4
, c
10
y
5
+ 9y
4
+ 17y
3
17y
2
+ 7y 1
c
5
, c
9
y
5
13y
4
+ 60y
3
72y
2
+ 32y 16
c
7
y
5
+ 14y
4
+ 143y
3
146y
2
39y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.581386 + 0.247464I
a = 0.410284 0.453785I
b = 0.589716 0.453785I
1.59034 1.66520I 2.97976 + 4.53195I
u = 0.581386 0.247464I
a = 0.410284 + 0.453785I
b = 0.589716 + 0.453785I
1.59034 + 1.66520I 2.97976 4.53195I
u = 0.504717
a = 2.11802
b = 1.11802
1.42879 7.49490
u = 0.17097 + 2.22112I
a = 1.46930 0.60354I
b = 2.46930 0.60354I
14.8579 7.7463I 4.23230 + 4.04224I
u = 0.17097 2.22112I
a = 1.46930 + 0.60354I
b = 2.46930 + 0.60354I
14.8579 + 7.7463I 4.23230 4.04224I
5
II. I
u
2
= hb, a + 1, u
2
u + 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u 1
a
2
=
u
u 1
a
6
=
1
0
a
5
=
1
0
a
4
=
1
u 1
a
7
=
u
u
a
8
=
0
u
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
10
u
2
u + 1
c
2
, c
3
, c
4
c
7
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 0
4.05977I 0. 6.92820I
9
III. I
u
3
= h−7u
5
+ 4u
4
+ · · · + 23b 18, 32u
5
+ 15u
4
+ · · · + 23a 10, u
6
+
6u
4
u
3
+ 7u
2
+ 3u + 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
2
=
u
u
3
+ u
a
6
=
1.39130u
5
0.652174u
4
+ ··· + 11.0435u + 0.434783
0.304348u
5
0.173913u
4
+ ··· + 2.47826u + 0.782609
a
5
=
1.08696u
5
0.478261u
4
+ ··· + 8.56522u 0.347826
0.304348u
5
0.173913u
4
+ ··· + 2.47826u + 0.782609
a
4
=
1.08696u
5
0.478261u
4
+ ··· + 8.56522u 0.347826
0.173913u
5
+ 0.0434783u
4
+ ··· + 2.13043u + 0.304348
a
7
=
0.217391u
5
0.304348u
4
+ ··· + 0.0869565u 3.13043
u
a
8
=
0.173913u
5
+ 0.0434783u
4
+ ··· + 1.13043u + 2.30435
0.0869565u
5
+ 0.478261u
4
+ ··· 1.56522u + 0.347826
a
9
=
0.391304u
5
0.347826u
4
+ ··· 2.04348u 2.43478
0.0434783u
5
+ 0.260870u
4
+ ··· + 1.78261u 0.173913
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
23
u
5
2
23
u
4
+
101
23
u
3
30
23
u
2
+
155
23
u +
101
23
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 3u + 1
c
2
, c
4
, c
10
u
6
+ 6u
4
+ u
3
+ 7u
2
3u + 1
c
5
, c
9
(u
3
2u
2
u 2)
2
c
7
u
6
+ u
5
+ 14u
4
+ 33u
3
+ 58u
2
+ 45u + 17
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
6
+ 6y
4
+ y
3
+ 7y
2
3y + 1
c
2
, c
4
, c
10
y
6
+ 12y
5
+ 50y
4
+ 85y
3
+ 67y
2
+ 5y + 1
c
5
, c
9
(y
3
6y
2
7y 4)
2
c
7
y
6
+ 27y
5
+ 246y
4
+ 479y
3
+ 870y
2
53y + 289
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.447867 + 1.186990I
a = 0.183999 + 0.561035I
b = 0.329484 + 0.802255I
0.60803 2.56897I 3.12391 + 2.13317I
u = 0.447867 1.186990I
a = 0.183999 0.561035I
b = 0.329484 0.802255I
0.60803 + 2.56897I 3.12391 2.13317I
u = 0.221168 + 0.280722I
a = 1.50390 + 3.84210I
b = 0.329484 + 0.802255I
0.60803 2.56897I 3.12391 + 2.13317I
u = 0.221168 0.280722I
a = 1.50390 3.84210I
b = 0.329484 0.802255I
0.60803 + 2.56897I 3.12391 2.13317I
u = 0.22670 + 2.19389I
a = 1.68010 0.20448I
b = 2.65897
15.2333 4.75217 + 0.I
u = 0.22670 2.19389I
a = 1.68010 + 0.20448I
b = 2.65897
15.2333 4.75217 + 0.I
13
IV. I
u
4
= hb, a u, u
2
u + 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u 1
a
2
=
u
u 1
a
6
=
u
0
a
5
=
u
0
a
4
=
u
1
a
7
=
1
u
a
8
=
0
u
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
10
u
2
u + 1
c
2
, c
3
, c
4
c
7
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0
0 3.00000
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0
0 3.00000
17
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
2
(u
5
+ u
4
+ u
3
u
2
+ u 1)
· (u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 3u + 1)
c
2
, c
4
((u
2
+ u + 1)
2
)(u
5
+ u
4
+ ··· u 1)(u
6
+ 6u
4
+ ··· 3u + 1)
c
3
, c
8
(u
2
+ u + 1)
2
(u
5
+ u
4
+ u
3
u
2
+ u 1)
· (u
6
+ 2u
5
+ 2u
4
+ u
3
+ 3u
2
+ 3u + 1)
c
5
, c
9
u
4
(u
3
2u
2
u 2)
2
(u
5
+ 5u
4
+ 6u
3
4u
2
8u 4)
c
7
(u
2
+ u + 1)
2
(u
5
4u
4
+ 15u
3
10u
2
u 2)
· (u
6
+ u
5
+ 14u
4
+ 33u
3
+ 58u
2
+ 45u + 17)
c
10
((u
2
u + 1)
2
)(u
5
+ u
4
+ ··· u 1)(u
6
+ 6u
4
+ ··· 3u + 1)
18
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
((y
2
+ y + 1)
2
)(y
5
+ y
4
+ ··· y 1)(y
6
+ 6y
4
+ ··· 3y + 1)
c
2
, c
4
, c
10
(y
2
+ y + 1)
2
(y
5
+ 9y
4
+ 17y
3
17y
2
+ 7y 1)
· (y
6
+ 12y
5
+ 50y
4
+ 85y
3
+ 67y
2
+ 5y + 1)
c
5
, c
9
y
4
(y
3
6y
2
7y 4)
2
(y
5
13y
4
+ 60y
3
72y
2
+ 32y 16)
c
7
(y
2
+ y + 1)
2
(y
5
+ 14y
4
+ 143y
3
146y
2
39y 4)
· (y
6
+ 27y
5
+ 246y
4
+ 479y
3
+ 870y
2
53y + 289)
19