12n
0123
(K12n
0123
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 9 3 11 1 12 8 6
Solving Sequence
3,8 7,12
11 9 6 1 10 5 2 4
c
7
c
11
c
8
c
6
c
12
c
10
c
5
c
2
c
4
c
1
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2.83838 × 10
326
u
84
+ 8.42548 × 10
326
u
83
+ ··· + 2.68317 × 10
328
b + 9.17623 × 10
328
,
6.23802 × 10
326
u
84
+ 1.74819 × 10
327
u
83
+ ··· + 5.36635 × 10
328
a 1.85693 × 10
330
,
u
85
+ 3u
84
+ ··· + 2560u 512i
I
u
2
= h2au + b + a + 2u + 1, a
2
+ 2au a 6u + 11, u
2
u 1i
I
v
1
= ha, 59103v
8
+ 362866v
7
+ ··· + 178147b + 551223, v
9
+ 5v
8
+ 10v
7
v
5
+ 37v
4
+ 7v
3
+ 12v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.84 × 10
326
u
84
+ 8.43 × 10
326
u
83
+ · · · + 2.68 × 10
328
b + 9.18 ×
10
328
, 6.24 × 10
326
u
84
+ 1.75 × 10
327
u
83
+ · · · + 5.37 × 10
328
a 1.86 ×
10
330
, u
85
+ 3u
84
+ · · · + 2560u 512i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
12
=
0.0116243u
84
0.0325769u
83
+ ··· 117.830u + 34.6031
0.0105784u
84
0.0314011u
83
+ ··· + 28.9627u 3.41991
a
11
=
0.0222028u
84
0.0639781u
83
+ ··· 88.8676u + 31.1832
0.0105784u
84
0.0314011u
83
+ ··· + 28.9627u 3.41991
a
9
=
0.0236744u
84
+ 0.0791102u
83
+ ··· 302.193u + 68.4988
0.00106759u
84
0.00464786u
83
+ ··· 28.9121u + 6.35083
a
6
=
0.105341u
84
0.352596u
83
+ ··· + 284.616u 67.6484
0.000678367u
84
+ 0.00363661u
83
+ ··· + 26.9996u 3.21130
a
1
=
0.00736711u
84
0.0243363u
83
+ ··· 14.6299u + 2.91925
0.00493845u
84
0.0150218u
83
+ ··· 12.8311u + 5.37028
a
10
=
0.0322107u
84
+ 0.101321u
83
+ ··· 331.012u + 70.6299
0.00385472u
84
0.0102384u
83
+ ··· 6.16248u + 2.58623
a
5
=
0.0119640u
84
0.0392482u
83
+ ··· 25.5114u + 7.14521
0.00459690u
84
+ 0.0149118u
83
+ ··· + 10.8814u 4.22596
a
2
=
0.00736711u
84
0.0243363u
83
+ ··· 14.6299u + 2.91925
0.00459690u
84
0.0149118u
83
+ ··· 10.8814u + 4.22596
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.381801u
84
+ 1.38285u
83
+ ··· 1273.67u + 380.918
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
85
+ 38u
84
+ ··· 213u + 1
c
2
, c
4
u
85
12u
84
+ ··· u + 1
c
3
, c
7
u
85
3u
84
+ ··· + 2560u + 512
c
5
u
85
u
84
+ ··· + 28266u + 22877
c
6
u
85
+ 3u
84
+ ··· + 112806u + 16279
c
8
, c
11
u
85
4u
84
+ ··· + 7u + 1
c
9
u
85
8u
84
+ ··· + 192u + 16
c
10
u
85
38u
84
+ ··· + 27u + 1
c
12
u
85
4u
84
+ ··· 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
85
+ 30y
84
+ ··· + 27491y 1
c
2
, c
4
y
85
38y
84
+ ··· 213y 1
c
3
, c
7
y
85
+ 51y
84
+ ··· 3932160y 262144
c
5
y
85
57y
84
+ ··· 21266860578y 523357129
c
6
y
85
81y
84
+ ··· + 5075593862y 265005841
c
8
, c
11
y
85
+ 38y
84
+ ··· + 27y 1
c
9
y
85
+ 20y
84
+ ··· + 12160y 256
c
10
y
85
+ 22y
84
+ ··· + 1735y 1
c
12
y
85
22y
84
+ ··· + 31y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.079250 + 0.084385I
a = 1.341430 + 0.023595I
b = 0.450037 0.371688I
1.013250 + 0.170939I 0
u = 1.079250 0.084385I
a = 1.341430 0.023595I
b = 0.450037 + 0.371688I
1.013250 0.170939I 0
u = 1.111280 + 0.071551I
a = 0.715294 + 0.590043I
b = 0.135819 1.144130I
3.33969 + 2.83227I 0
u = 1.111280 0.071551I
a = 0.715294 0.590043I
b = 0.135819 + 1.144130I
3.33969 2.83227I 0
u = 0.129045 + 1.113980I
a = 1.009610 0.472785I
b = 0.956465 + 0.931163I
0.094102 1.056740I 0
u = 0.129045 1.113980I
a = 1.009610 + 0.472785I
b = 0.956465 0.931163I
0.094102 + 1.056740I 0
u = 0.210154 + 1.114290I
a = 0.203823 0.103598I
b = 0.688869 0.426448I
3.15620 + 2.51605I 0
u = 0.210154 1.114290I
a = 0.203823 + 0.103598I
b = 0.688869 + 0.426448I
3.15620 2.51605I 0
u = 0.433540 + 1.050740I
a = 1.62226 0.79944I
b = 0.239254 1.010500I
0.982642 + 0.642938I 0
u = 0.433540 1.050740I
a = 1.62226 + 0.79944I
b = 0.239254 + 1.010500I
0.982642 0.642938I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.257695 + 1.109990I
a = 0.787822 0.341976I
b = 1.098020 + 0.136398I
1.09681 + 2.37421I 0
u = 0.257695 1.109990I
a = 0.787822 + 0.341976I
b = 1.098020 0.136398I
1.09681 2.37421I 0
u = 0.262541 + 1.168940I
a = 0.218677 0.885410I
b = 0.465838 + 0.484615I
2.10819 3.90878I 0
u = 0.262541 1.168940I
a = 0.218677 + 0.885410I
b = 0.465838 0.484615I
2.10819 + 3.90878I 0
u = 0.218930 + 1.186920I
a = 0.72368 + 1.66080I
b = 0.563973 0.682913I
2.18193 1.17088I 0
u = 0.218930 1.186920I
a = 0.72368 1.66080I
b = 0.563973 + 0.682913I
2.18193 + 1.17088I 0
u = 0.758522 + 0.188313I
a = 0.71807 1.77432I
b = 0.574022 + 1.099820I
1.13123 4.17645I 11.8176 + 9.1818I
u = 0.758522 0.188313I
a = 0.71807 + 1.77432I
b = 0.574022 1.099820I
1.13123 + 4.17645I 11.8176 9.1818I
u = 0.341078 + 1.170670I
a = 1.299470 + 0.134652I
b = 1.049370 0.766403I
0.41725 + 6.01567I 0
u = 0.341078 1.170670I
a = 1.299470 0.134652I
b = 1.049370 + 0.766403I
0.41725 6.01567I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.041071 + 1.235810I
a = 0.640152 + 0.371475I
b = 0.533714 + 1.299760I
3.32593 3.12666I 0
u = 0.041071 1.235810I
a = 0.640152 0.371475I
b = 0.533714 1.299760I
3.32593 + 3.12666I 0
u = 1.206060 + 0.339502I
a = 1.52169 0.13928I
b = 0.804789 + 0.394562I
1.81678 5.27916I 0
u = 1.206060 0.339502I
a = 1.52169 + 0.13928I
b = 0.804789 0.394562I
1.81678 + 5.27916I 0
u = 0.573407 + 0.367957I
a = 0.51933 3.19375I
b = 0.732207 + 0.631342I
3.03530 2.32112I 18.2811 + 2.9821I
u = 0.573407 0.367957I
a = 0.51933 + 3.19375I
b = 0.732207 0.631342I
3.03530 + 2.32112I 18.2811 2.9821I
u = 0.091692 + 1.317030I
a = 1.23007 1.63631I
b = 0.448877 0.989908I
3.52281 0.13174I 0
u = 0.091692 1.317030I
a = 1.23007 + 1.63631I
b = 0.448877 + 0.989908I
3.52281 + 0.13174I 0
u = 0.413209 + 1.277050I
a = 1.317440 0.293401I
b = 0.66453 1.29582I
2.39077 + 8.65291I 0
u = 0.413209 1.277050I
a = 1.317440 + 0.293401I
b = 0.66453 + 1.29582I
2.39077 8.65291I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.312068 + 1.307370I
a = 2.43711 + 1.16729I
b = 0.529124 + 0.972751I
3.08119 5.55867I 0
u = 0.312068 1.307370I
a = 2.43711 1.16729I
b = 0.529124 0.972751I
3.08119 + 5.55867I 0
u = 0.459021 + 0.459779I
a = 1.10908 1.88671I
b = 0.649790 0.402922I
3.21369 + 0.63442I 17.2881 6.4476I
u = 0.459021 0.459779I
a = 1.10908 + 1.88671I
b = 0.649790 + 0.402922I
3.21369 0.63442I 17.2881 + 6.4476I
u = 0.634951 + 0.073211I
a = 1.163640 + 0.016828I
b = 0.104936 0.148183I
0.938890 0.000686I 9.17733 + 0.04419I
u = 0.634951 0.073211I
a = 1.163640 0.016828I
b = 0.104936 + 0.148183I
0.938890 + 0.000686I 9.17733 0.04419I
u = 1.237320 + 0.581154I
a = 0.846750 0.577129I
b = 0.365370 + 1.037680I
1.88882 + 2.34511I 0
u = 1.237320 0.581154I
a = 0.846750 + 0.577129I
b = 0.365370 1.037680I
1.88882 2.34511I 0
u = 0.326856 + 1.339410I
a = 0.875245 + 0.373465I
b = 0.659177 0.135566I
4.34006 0.60753I 0
u = 0.326856 1.339410I
a = 0.875245 0.373465I
b = 0.659177 + 0.135566I
4.34006 + 0.60753I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.143186 + 1.381320I
a = 0.806814 + 0.741077I
b = 0.570387 + 1.078250I
1.24862 + 7.38729I 0
u = 0.143186 1.381320I
a = 0.806814 0.741077I
b = 0.570387 1.078250I
1.24862 7.38729I 0
u = 0.607638 + 0.026477I
a = 3.83486 6.56337I
b = 0.489160 0.868710I
1.01649 + 2.08350I 108.2002 27.5787I
u = 0.607638 0.026477I
a = 3.83486 + 6.56337I
b = 0.489160 + 0.868710I
1.01649 2.08350I 108.2002 + 27.5787I
u = 0.573976 + 0.144239I
a = 0.19466 6.06422I
b = 0.458798 + 0.876673I
1.01583 1.80194I 34.3945 + 9.4437I
u = 0.573976 0.144239I
a = 0.19466 + 6.06422I
b = 0.458798 0.876673I
1.01583 + 1.80194I 34.3945 9.4437I
u = 0.581059
a = 1.11628
b = 0.132880
0.943887 9.70520
u = 0.64849 + 1.26742I
a = 0.886065 0.572978I
b = 0.669667 + 0.411070I
2.43921 5.21595I 0
u = 0.64849 1.26742I
a = 0.886065 + 0.572978I
b = 0.669667 0.411070I
2.43921 + 5.21595I 0
u = 1.40213 + 0.33857I
a = 1.163050 + 0.534355I
b = 0.601473 1.118200I
0.33638 10.54090I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40213 0.33857I
a = 1.163050 0.534355I
b = 0.601473 + 1.118200I
0.33638 + 10.54090I 0
u = 0.056938 + 0.544127I
a = 1.42278 0.39423I
b = 0.835208 + 0.748484I
5.59621 1.18326I 2.58478 2.54783I
u = 0.056938 0.544127I
a = 1.42278 + 0.39423I
b = 0.835208 0.748484I
5.59621 + 1.18326I 2.58478 + 2.54783I
u = 0.188367 + 0.482280I
a = 1.106380 0.209517I
b = 0.251302 + 1.017870I
1.59907 2.42394I 1.69948 + 4.54557I
u = 0.188367 0.482280I
a = 1.106380 + 0.209517I
b = 0.251302 1.017870I
1.59907 + 2.42394I 1.69948 4.54557I
u = 0.014000 + 0.513349I
a = 1.38502 + 0.50649I
b = 0.752798 0.984184I
4.86894 7.11123I 0.90699 + 6.44296I
u = 0.014000 0.513349I
a = 1.38502 0.50649I
b = 0.752798 + 0.984184I
4.86894 + 7.11123I 0.90699 6.44296I
u = 1.49443 + 0.02360I
a = 1.103380 + 0.416439I
b = 0.508069 1.060060I
0.90720 4.33616I 0
u = 1.49443 0.02360I
a = 1.103380 0.416439I
b = 0.508069 + 1.060060I
0.90720 + 4.33616I 0
u = 0.47007 + 1.42149I
a = 0.766976 0.387618I
b = 0.930414 + 0.340544I
3.61530 5.88108I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.47007 1.42149I
a = 0.766976 + 0.387618I
b = 0.930414 0.340544I
3.61530 + 5.88108I 0
u = 0.129721 + 0.460651I
a = 0.38178 8.17649I
b = 0.586175 0.964824I
2.08258 + 2.71217I 0.93392 9.03807I
u = 0.129721 0.460651I
a = 0.38178 + 8.17649I
b = 0.586175 + 0.964824I
2.08258 2.71217I 0.93392 + 9.03807I
u = 0.69533 + 1.35551I
a = 0.839067 + 0.683647I
b = 0.987614 0.425089I
1.45650 + 12.12210I 0
u = 0.69533 1.35551I
a = 0.839067 0.683647I
b = 0.987614 + 0.425089I
1.45650 12.12210I 0
u = 0.20084 + 1.51437I
a = 0.196514 + 0.358472I
b = 0.152432 + 1.330190I
9.43138 2.34122I 0
u = 0.20084 1.51437I
a = 0.196514 0.358472I
b = 0.152432 1.330190I
9.43138 + 2.34122I 0
u = 0.51519 + 1.44160I
a = 0.278437 0.202187I
b = 0.053028 1.378990I
8.12807 + 8.74738I 0
u = 0.51519 1.44160I
a = 0.278437 + 0.202187I
b = 0.053028 + 1.378990I
8.12807 8.74738I 0
u = 0.67286 + 1.43031I
a = 1.382550 + 0.212615I
b = 0.465319 + 1.120770I
7.12915 + 3.60494I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.67286 1.43031I
a = 1.382550 0.212615I
b = 0.465319 1.120770I
7.12915 3.60494I 0
u = 0.83986 + 1.36381I
a = 1.58928 0.15583I
b = 0.569092 1.079590I
4.36978 10.04380I 0
u = 0.83986 1.36381I
a = 1.58928 + 0.15583I
b = 0.569092 + 1.079590I
4.36978 + 10.04380I 0
u = 0.76822 + 1.41143I
a = 1.68389 + 0.29933I
b = 0.675369 + 1.176190I
3.7759 + 18.1504I 0
u = 0.76822 1.41143I
a = 1.68389 0.29933I
b = 0.675369 1.176190I
3.7759 18.1504I 0
u = 0.56721 + 1.54481I
a = 1.362350 0.354229I
b = 0.623855 1.176920I
6.15588 11.53790I 0
u = 0.56721 1.54481I
a = 1.362350 + 0.354229I
b = 0.623855 + 1.176920I
6.15588 + 11.53790I 0
u = 1.64677 + 0.04569I
a = 1.117370 0.194170I
b = 0.479694 + 0.856026I
8.84126 + 1.96210I 0
u = 1.64677 0.04569I
a = 1.117370 + 0.194170I
b = 0.479694 0.856026I
8.84126 1.96210I 0
u = 0.49039 + 1.61919I
a = 0.298433 + 0.301314I
b = 0.239444 + 1.049820I
6.55517 3.11546I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.49039 1.61919I
a = 0.298433 0.301314I
b = 0.239444 1.049820I
6.55517 + 3.11546I 0
u = 0.225615 + 0.193490I
a = 0.929610 + 0.057774I
b = 0.607173 + 0.840075I
0.60683 2.35987I 1.70647 + 4.72969I
u = 0.225615 0.193490I
a = 0.929610 0.057774I
b = 0.607173 0.840075I
0.60683 + 2.35987I 1.70647 4.72969I
u = 0.22938 + 1.72989I
a = 0.510244 0.261796I
b = 0.372735 1.103380I
7.76106 3.97762I 0
u = 0.22938 1.72989I
a = 0.510244 + 0.261796I
b = 0.372735 + 1.103380I
7.76106 + 3.97762I 0
13
II. I
u
2
= h2au + b + a + 2u + 1, a
2
+ 2au a 6u + 11, u
2
u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u 1
a
12
=
a
2au a 2u 1
a
11
=
2au 2u 1
2au a 2u 1
a
9
=
a + 2u 2
2au a 2u 2
a
6
=
au 2a + u 1
au 1
a
1
=
u
3u 2
a
10
=
a + 2u 2
2au a 2u 2
a
5
=
1
u 1
a
2
=
u
u 1
a
4
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 92au 67a 113u 94
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
7
(u
2
u 1)
2
c
5
, c
6
u
4
+ 3u
3
+ 8u
2
+ 3u + 1
c
8
(u
2
u + 1)
2
c
9
u
4
c
10
, c
11
(u
2
+ u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
7
(y
2
3y + 1)
2
c
5
, c
6
y
4
+ 7y
3
+ 48y
2
+ 7y + 1
c
8
, c
10
, c
11
(y
2
+ y + 1)
2
c
9
y
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.11803 + 3.66854I
b = 0.500000 + 0.866025I
0.98696 2.02988I 35.5000 37.2022I
u = 0.618034
a = 1.11803 3.66854I
b = 0.500000 0.866025I
0.98696 + 2.02988I 35.5000 + 37.2022I
u = 1.61803
a = 1.118030 + 0.204441I
b = 0.500000 0.866025I
8.88264 + 2.02988I 35.5000 44.1304I
u = 1.61803
a = 1.118030 0.204441I
b = 0.500000 + 0.866025I
8.88264 2.02988I 35.5000 + 44.1304I
17
III.
I
v
1
= ha, 59103v
8
+ 362866v
7
+ · · · + 178147b + 551223, v
9
+ 5v
8
+ · · · + v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
7
=
1
0
a
12
=
0
0.331765v
8
2.03689v
7
+ ··· 3.64641v 3.09420
a
11
=
0.331765v
8
2.03689v
7
+ ··· 3.64641v 3.09420
0.331765v
8
2.03689v
7
+ ··· 3.64641v 3.09420
a
9
=
0.727601v
8
+ 4.15347v
7
+ ··· + 6.59548v + 4.24127
0.727601v
8
+ 4.15347v
7
+ ··· + 6.59548v + 3.24127
a
6
=
0.704452v
8
+ 3.76495v
7
+ ··· + 3.53747v + 0.954251
0.0231494v
8
0.388527v
7
+ ··· 3.05801v 3.28702
a
1
=
1.20067v
8
5.89924v
7
+ ··· 2.68791v + 0.492840
v
8
+ 5v
7
+ 10v
6
v
4
+ 37v
3
+ 7v
2
+ 12v + 1
a
10
=
0.331765v
8
2.03689v
7
+ ··· 3.64641v 3.09420
1.07440v
8
6.00362v
7
+ ··· 8.53879v 3.73749
a
5
=
1.20067v
8
+ 5.89924v
7
+ ··· + 2.68791v 0.492840
v
8
5v
7
10v
6
+ v
4
37v
3
7v
2
12v 1
a
2
=
1.20067v
8
5.89924v
7
+ ··· 1.68791v + 0.492840
v
8
+ 5v
7
+ 10v
6
v
4
+ 37v
3
+ 7v
2
+ 12v + 1
a
4
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
279551
178147
v
8
+
1437368
178147
v
7
+
2978743
178147
v
6
+
272298
178147
v
5
682691
178147
v
4
+
9851898
178147
v
3
+
3817557
178147
v
2
+
3775595
178147
v
3107095
178147
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
, c
9
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
6
, c
10
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
8
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
11
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
12
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
9
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
6
, c
10
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
8
, c
11
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
12
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.939568 + 0.981640I
a = 0
b = 0.140343 + 0.966856I
0.13850 2.09337I 7.58955 + 5.46639I
v = 0.939568 0.981640I
a = 0
b = 0.140343 0.966856I
0.13850 + 2.09337I 7.58955 5.46639I
v = 0.119081 + 0.409451I
a = 0
b = 0.796005 + 0.733148I
6.01628 1.33617I 20.0794 + 3.5537I
v = 0.119081 0.409451I
a = 0
b = 0.796005 0.733148I
6.01628 + 1.33617I 20.0794 3.5537I
v = 0.016164 + 0.378317I
a = 0
b = 0.728966 0.986295I
5.24306 7.08493I 20.6685 + 5.3307I
v = 0.016164 0.378317I
a = 0
b = 0.728966 + 0.986295I
5.24306 + 7.08493I 20.6685 5.3307I
v = 2.14893
a = 0
b = 0.512358
2.84338 11.8180
v = 2.26219 + 2.13290I
a = 0
b = 0.628449 + 0.875112I
2.26187 2.45442I 9.75362 6.63381I
v = 2.26219 2.13290I
a = 0
b = 0.628449 0.875112I
2.26187 + 2.45442I 9.75362 + 6.63381I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
2
3u + 1)
2
(u
85
+ 38u
84
+ ··· 213u + 1)
c
2
((u 1)
9
)(u
2
+ u 1)
2
(u
85
12u
84
+ ··· u + 1)
c
3
u
9
(u
2
+ u 1)
2
(u
85
3u
84
+ ··· + 2560u + 512)
c
4
((u + 1)
9
)(u
2
u 1)
2
(u
85
12u
84
+ ··· u + 1)
c
5
(u
4
+ 3u
3
+ 8u
2
+ 3u + 1)(u
9
+ u
8
+ ··· u 1)
· (u
85
u
84
+ ··· + 28266u + 22877)
c
6
(u
4
+ 3u
3
+ 8u
2
+ 3u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
85
+ 3u
84
+ ··· + 112806u + 16279)
c
7
u
9
(u
2
u 1)
2
(u
85
3u
84
+ ··· + 2560u + 512)
c
8
(u
2
u + 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
85
4u
84
+ ··· + 7u + 1)
c
9
u
4
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
85
8u
84
+ ··· + 192u + 16)
c
10
(u
2
+ u + 1)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
85
38u
84
+ ··· + 27u + 1)
c
11
(u
2
+ u + 1)
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
85
4u
84
+ ··· + 7u + 1)
c
12
((u
2
3u + 1)
2
)(u
9
+ 5u
8
+ ··· + u + 1)
· (u
85
4u
84
+ ··· 5u + 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
2
7y + 1)
2
(y
85
+ 30y
84
+ ··· + 27491y 1)
c
2
, c
4
((y 1)
9
)(y
2
3y + 1)
2
(y
85
38y
84
+ ··· 213y 1)
c
3
, c
7
y
9
(y
2
3y + 1)
2
(y
85
+ 51y
84
+ ··· 3932160y 262144)
c
5
(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
85
57y
84
+ ··· 21266860578y 523357129)
c
6
(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
85
81y
84
+ ··· + 5075593862y 265005841)
c
8
, c
11
(y
2
+ y + 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
85
+ 38y
84
+ ··· + 27y 1)
c
9
y
4
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
85
+ 20y
84
+ ··· + 12160y 256)
c
10
((y
2
+ y + 1)
2
)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
85
+ 22y
84
+ ··· + 1735y 1)
c
12
(y
2
7y + 1)
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
85
22y
84
+ ··· + 31y 1)
23