12n
0126
(K12n
0126
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 3 6 12 8 1 9
Solving Sequence
3,8 7,11
6 9 10 5 2 1 4 12
c
7
c
6
c
8
c
10
c
5
c
2
c
1
c
4
c
12
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.07079 × 10
303
u
80
+ 1.55900 × 10
304
u
79
+ ··· + 4.90378 × 10
306
b 8.03703 × 10
306
,
1.46094 × 10
304
u
80
6.01646 × 10
304
u
79
+ ··· + 4.90378 × 10
306
a 3.48928 × 10
307
,
u
81
3u
80
+ ··· + 1024u + 1024i
I
u
2
= hb, a
2
3au + 5a 21u + 34, u
2
u 1i
I
v
1
= ha, v
2
+ b + 3v 1, v
4
5v
3
+ 7v
2
2v + 1i
I
v
2
= ha, 3v
5
38v
4
14v
3
295v
2
+ 67b 19v 65, v
6
+ 8v
4
+ 2v
3
+ 4v
2
+ v + 1i
* 4 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.07 × 10
303
u
80
+ 1.56 × 10
304
u
79
+ · · · + 4.90 × 10
306
b 8.04 ×
10
306
, 1.46 × 10
304
u
80
6.02 × 10
304
u
79
+ · · · + 4.90 × 10
306
a 3.49 ×
10
307
, u
81
3u
80
+ · · · + 1024u + 1024i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
11
=
0.00297921u
80
+ 0.0122690u
79
+ ··· 18.5060u + 7.11548
0.00123798u
80
0.00317918u
79
+ ··· + 8.06983u + 1.63894
a
6
=
0.00291408u
80
0.00699880u
79
+ ··· 21.8367u + 36.3426
0.000604359u
80
+ 0.00154234u
79
+ ··· 5.55867u 0.574802
a
9
=
0.00467296u
80
+ 0.0119450u
79
+ ··· 39.3868u 6.00265
0.00154134u
80
+ 0.00547407u
79
+ ··· 6.57065u + 2.38699
a
10
=
0.00421719u
80
+ 0.0154482u
79
+ ··· 26.5758u + 5.47653
0.00123798u
80
0.00317918u
79
+ ··· + 8.06983u + 1.63894
a
5
=
0.00342207u
80
+ 0.0108220u
79
+ ··· 17.4933u 1.23720
0.00111382u
80
0.00415508u
79
+ ··· + 3.94295u 2.65104
a
2
=
0.00230825u
80
0.00666691u
79
+ ··· + 13.5504u + 3.88824
0.00111382u
80
0.00415508u
79
+ ··· + 3.94295u 2.65104
a
1
=
0.00230825u
80
0.00666691u
79
+ ··· + 13.5504u + 3.88824
0.00154134u
80
0.00547407u
79
+ ··· + 6.57065u 2.38699
a
4
=
u
u
a
12
=
0.00259882u
80
+ 0.0103269u
79
+ ··· 11.5768u + 3.13075
0.00426527u
80
0.0133743u
79
+ ··· + 18.6658u 0.457794
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0207517u
80
0.0712635u
79
+ ··· + 7.67115u + 25.2859
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
81
+ 33u
80
+ ··· + 130u + 1
c
2
, c
4
u
81
13u
80
+ ··· 12u + 1
c
3
, c
7
u
81
3u
80
+ ··· + 1024u + 1024
c
5
u
81
+ 5u
80
+ ··· 47488u + 22208
c
6
u
81
+ u
80
+ ··· + 8905262u + 2124511
c
8
u
81
4u
80
+ ··· 5u + 1
c
9
, c
12
u
81
+ 4u
80
+ ··· + 83u 1
c
10
u
81
+ 8u
80
+ ··· + 256u + 16
c
11
u
81
+ 30u
80
+ ··· + 6303u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
81
+ 43y
80
+ ··· + 5274y 1
c
2
, c
4
y
81
33y
80
+ ··· + 130y 1
c
3
, c
7
y
81
+ 57y
80
+ ··· 27787264y 1048576
c
5
y
81
+ 103y
80
+ ··· 19451522048y 493195264
c
6
y
81
+ 47y
80
+ ··· + 59668081079090y 4513546989121
c
8
y
81
6y
80
+ ··· + 11y 1
c
9
, c
12
y
81
+ 30y
80
+ ··· + 6303y 1
c
10
y
81
20y
80
+ ··· 1152y 256
c
11
y
81
+ 46y
80
+ ··· + 39786411y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.890661 + 0.321140I
a = 0.442794 0.506116I
b = 1.003170 0.678335I
3.72961 + 3.73093I 0
u = 0.890661 0.321140I
a = 0.442794 + 0.506116I
b = 1.003170 + 0.678335I
3.72961 3.73093I 0
u = 0.880183 + 0.328930I
a = 0.192285 + 0.385420I
b = 0.519092 + 0.581351I
2.15630 + 0.07606I 0
u = 0.880183 0.328930I
a = 0.192285 0.385420I
b = 0.519092 0.581351I
2.15630 0.07606I 0
u = 0.336499 + 0.810387I
a = 2.50423 + 0.47126I
b = 0.722560 + 0.702901I
4.60609 1.52975I 9.48461 + 4.54719I
u = 0.336499 0.810387I
a = 2.50423 0.47126I
b = 0.722560 0.702901I
4.60609 + 1.52975I 9.48461 4.54719I
u = 0.086690 + 1.153850I
a = 1.217480 + 0.665727I
b = 0.759691 0.320662I
1.73887 + 0.56914I 0
u = 0.086690 1.153850I
a = 1.217480 0.665727I
b = 0.759691 + 0.320662I
1.73887 0.56914I 0
u = 0.439042 + 1.154740I
a = 0.732667 0.568454I
b = 0.668186 + 0.622788I
0.95414 + 4.42889I 0
u = 0.439042 1.154740I
a = 0.732667 + 0.568454I
b = 0.668186 0.622788I
0.95414 4.42889I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.757611 + 0.003546I
a = 0.24323 2.40067I
b = 0.675714 + 1.029340I
0.12016 + 3.83503I 2.19897 9.50011I
u = 0.757611 0.003546I
a = 0.24323 + 2.40067I
b = 0.675714 1.029340I
0.12016 3.83503I 2.19897 + 9.50011I
u = 0.123794 + 1.279290I
a = 1.50264 0.27690I
b = 1.68690 0.59992I
0.90648 + 3.26112I 0
u = 0.123794 1.279290I
a = 1.50264 + 0.27690I
b = 1.68690 + 0.59992I
0.90648 3.26112I 0
u = 0.239752 + 1.287670I
a = 0.863701 0.766311I
b = 0.941346 0.469197I
0.58736 1.68614I 0
u = 0.239752 1.287670I
a = 0.863701 + 0.766311I
b = 0.941346 + 0.469197I
0.58736 + 1.68614I 0
u = 1.357180 + 0.050552I
a = 0.0152362 0.1308150I
b = 1.112340 + 0.692920I
2.74432 + 4.49163I 0
u = 1.357180 0.050552I
a = 0.0152362 + 0.1308150I
b = 1.112340 0.692920I
2.74432 4.49163I 0
u = 0.616988 + 0.161976I
a = 0.42521 + 1.42820I
b = 0.910146 0.634484I
1.29375 1.45245I 3.62930 + 4.86424I
u = 0.616988 0.161976I
a = 0.42521 1.42820I
b = 0.910146 + 0.634484I
1.29375 + 1.45245I 3.62930 4.86424I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077263 + 0.631820I
a = 0.116121 0.173911I
b = 0.297655 1.305260I
5.47007 0.37522I 3.64589 + 3.20724I
u = 0.077263 0.631820I
a = 0.116121 + 0.173911I
b = 0.297655 + 1.305260I
5.47007 + 0.37522I 3.64589 3.20724I
u = 0.455347 + 0.441128I
a = 1.71279 1.55684I
b = 0.569120 0.233874I
1.004280 0.810007I 4.84130 2.46574I
u = 0.455347 0.441128I
a = 1.71279 + 1.55684I
b = 0.569120 + 0.233874I
1.004280 + 0.810007I 4.84130 + 2.46574I
u = 0.020461 + 0.617454I
a = 0.073029 0.151006I
b = 0.391395 + 1.125760I
1.20619 + 3.00339I 2.21341 3.98452I
u = 0.020461 0.617454I
a = 0.073029 + 0.151006I
b = 0.391395 1.125760I
1.20619 3.00339I 2.21341 + 3.98452I
u = 0.612334
a = 0.700707
b = 0.112219
1.00318 10.1710
u = 0.154661 + 1.382630I
a = 0.18086 1.44008I
b = 0.018338 + 0.694246I
3.68961 + 0.58365I 0
u = 0.154661 1.382630I
a = 0.18086 + 1.44008I
b = 0.018338 0.694246I
3.68961 0.58365I 0
u = 0.603292 + 0.010555I
a = 1.93148 11.47890I
b = 0.015568 + 0.155944I
1.02453 2.05291I 171.972 + 28.532I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.603292 0.010555I
a = 1.93148 + 11.47890I
b = 0.015568 0.155944I
1.02453 + 2.05291I 171.972 28.532I
u = 0.277078 + 1.371800I
a = 0.68222 + 1.38332I
b = 0.260117 0.634813I
3.45045 + 5.35632I 0
u = 0.277078 1.371800I
a = 0.68222 1.38332I
b = 0.260117 + 0.634813I
3.45045 5.35632I 0
u = 0.50450 + 1.33076I
a = 1.49367 0.17378I
b = 1.60038 + 1.10707I
0.35544 9.04141I 0
u = 0.50450 1.33076I
a = 1.49367 + 0.17378I
b = 1.60038 1.10707I
0.35544 + 9.04141I 0
u = 0.00539 + 1.42943I
a = 1.054200 + 0.533535I
b = 0.975011 + 0.566121I
0.36837 7.06216I 0
u = 0.00539 1.42943I
a = 1.054200 0.533535I
b = 0.975011 0.566121I
0.36837 + 7.06216I 0
u = 0.05609 + 1.43328I
a = 0.951617 + 0.465595I
b = 0.99821 + 1.90356I
5.23560 + 2.02485I 0
u = 0.05609 1.43328I
a = 0.951617 0.465595I
b = 0.99821 1.90356I
5.23560 2.02485I 0
u = 0.060321 + 0.542689I
a = 0.1220830 + 0.0599037I
b = 0.495796 1.199200I
3.86039 + 7.78753I 2.42285 9.44743I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.060321 0.542689I
a = 0.1220830 0.0599037I
b = 0.495796 + 1.199200I
3.86039 7.78753I 2.42285 + 9.44743I
u = 0.21037 + 1.44375I
a = 1.271590 + 0.097495I
b = 0.747773 0.139398I
4.09035 + 3.09672I 0
u = 0.21037 1.44375I
a = 1.271590 0.097495I
b = 0.747773 + 0.139398I
4.09035 3.09672I 0
u = 0.35709 + 1.43000I
a = 0.667194 0.762996I
b = 1.46916 1.65478I
4.66300 8.19652I 0
u = 0.35709 1.43000I
a = 0.667194 + 0.762996I
b = 1.46916 + 1.65478I
4.66300 + 8.19652I 0
u = 1.45915 + 0.22710I
a = 0.1005500 + 0.0324263I
b = 1.114300 0.737613I
1.48186 + 10.21890I 0
u = 1.45915 0.22710I
a = 0.1005500 0.0324263I
b = 1.114300 + 0.737613I
1.48186 10.21890I 0
u = 0.458462 + 0.233945I
a = 1.32051 7.34173I
b = 0.190371 + 0.428906I
1.11518 + 1.63608I 22.5154 16.4209I
u = 0.458462 0.233945I
a = 1.32051 + 7.34173I
b = 0.190371 0.428906I
1.11518 1.63608I 22.5154 + 16.4209I
u = 1.42270 + 0.44570I
a = 0.0501638 0.1205880I
b = 0.955191 + 0.178009I
1.96531 1.49483I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42270 0.44570I
a = 0.0501638 + 0.1205880I
b = 0.955191 0.178009I
1.96531 + 1.49483I 0
u = 0.16545 + 1.48707I
a = 1.079910 + 0.634140I
b = 1.82794 + 1.28596I
7.13557 1.25582I 0
u = 0.16545 1.48707I
a = 1.079910 0.634140I
b = 1.82794 1.28596I
7.13557 + 1.25582I 0
u = 0.25605 + 1.48232I
a = 1.292240 0.234967I
b = 1.47994 1.70675I
6.96738 5.09561I 0
u = 0.25605 1.48232I
a = 1.292240 + 0.234967I
b = 1.47994 + 1.70675I
6.96738 + 5.09561I 0
u = 0.412488 + 0.213180I
a = 0.80784 1.70565I
b = 0.531910 + 0.798490I
1.15026 + 1.50439I 2.46877 2.61626I
u = 0.412488 0.213180I
a = 0.80784 + 1.70565I
b = 0.531910 0.798490I
1.15026 1.50439I 2.46877 + 2.61626I
u = 1.54169 + 0.19466I
a = 0.1029750 + 0.0228323I
b = 0.958935 0.306788I
1.52644 + 3.83350I 0
u = 1.54169 0.19466I
a = 0.1029750 0.0228323I
b = 0.958935 + 0.306788I
1.52644 3.83350I 0
u = 0.110600 + 0.423339I
a = 8.26925 + 1.55023I
b = 0.443406 0.498696I
1.63060 2.73282I 5.99931 8.61315I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.110600 0.423339I
a = 8.26925 1.55023I
b = 0.443406 + 0.498696I
1.63060 + 2.73282I 5.99931 + 8.61315I
u = 1.59287 + 0.05128I
a = 0.0398353 0.0628798I
b = 0.149905 0.238308I
8.92096 1.95711I 0
u = 1.59287 0.05128I
a = 0.0398353 + 0.0628798I
b = 0.149905 + 0.238308I
8.92096 + 1.95711I 0
u = 0.66734 + 1.50573I
a = 1.297240 + 0.255032I
b = 1.33285 1.17939I
7.29123 11.70270I 0
u = 0.66734 1.50573I
a = 1.297240 0.255032I
b = 1.33285 + 1.17939I
7.29123 + 11.70270I 0
u = 0.029747 + 0.351694I
a = 2.43391 1.81274I
b = 0.792812 + 0.170600I
0.39491 + 2.82152I 0.62625 4.26826I
u = 0.029747 0.351694I
a = 2.43391 + 1.81274I
b = 0.792812 0.170600I
0.39491 2.82152I 0.62625 + 4.26826I
u = 0.75699 + 1.47497I
a = 1.302640 0.324763I
b = 1.28571 + 1.12380I
5.4200 17.9748I 0
u = 0.75699 1.47497I
a = 1.302640 + 0.324763I
b = 1.28571 1.12380I
5.4200 + 17.9748I 0
u = 0.36850 + 1.64315I
a = 1.187110 + 0.042447I
b = 1.42144 + 0.91410I
9.10043 + 4.86820I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.36850 1.64315I
a = 1.187110 0.042447I
b = 1.42144 0.91410I
9.10043 4.86820I 0
u = 0.83647 + 1.48482I
a = 0.742052 0.280001I
b = 0.993630 + 0.569689I
5.25967 + 9.70670I 0
u = 0.83647 1.48482I
a = 0.742052 + 0.280001I
b = 0.993630 0.569689I
5.25967 9.70670I 0
u = 0.51625 + 1.63587I
a = 1.196860 + 0.057613I
b = 1.34804 0.90499I
7.63873 + 11.12540I 0
u = 0.51625 1.63587I
a = 1.196860 0.057613I
b = 1.34804 + 0.90499I
7.63873 11.12540I 0
u = 0.67879 + 1.59644I
a = 0.797876 + 0.245149I
b = 0.988493 0.473850I
6.21314 + 4.26930I 0
u = 0.67879 1.59644I
a = 0.797876 0.245149I
b = 0.988493 + 0.473850I
6.21314 4.26930I 0
u = 0.63390 + 1.61836I
a = 0.704523 + 0.328418I
b = 1.173510 0.194303I
7.80552 2.77364I 0
u = 0.63390 1.61836I
a = 0.704523 0.328418I
b = 1.173510 + 0.194303I
7.80552 + 2.77364I 0
u = 0.42765 + 1.74880I
a = 0.765788 0.255230I
b = 1.156090 + 0.105237I
8.06491 + 2.92024I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.42765 1.74880I
a = 0.765788 + 0.255230I
b = 1.156090 0.105237I
8.06491 2.92024I 0
13
II. I
u
2
= hb, a
2
3au + 5a 21u + 34, u
2
u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
7
=
1
u 1
a
11
=
a
0
a
6
=
au 2a + 8u 12
u 1
a
9
=
a 4u + 5
3u + 2
a
10
=
a
0
a
5
=
1
u 1
a
2
=
u
u 1
a
1
=
u
3u 2
a
4
=
u
u
a
12
=
5au 2a
21au + 13a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 159au 92a 21u + 24
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
7
(u
2
u 1)
2
c
5
, c
6
u
4
+ 3u
3
+ 8u
2
+ 3u + 1
c
8
(u
2
+ 3u + 1)
2
c
9
(u
2
+ u + 1)
2
c
10
u
4
c
11
, c
12
(u
2
u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
7
(y
2
3y + 1)
2
c
5
, c
6
y
4
+ 7y
3
+ 48y
2
+ 7y + 1
c
9
, c
11
, c
12
(y
2
+ y + 1)
2
c
10
y
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 3.42705 + 5.93583I
b = 0
0.98696 + 2.02988I 15.5000 + 37.2022I
u = 0.618034
a = 3.42705 5.93583I
b = 0
0.98696 2.02988I 15.5000 37.2022I
u = 1.61803
a = 0.072949 + 0.126351I
b = 0
8.88264 + 2.02988I 15.5000 44.1304I
u = 1.61803
a = 0.072949 0.126351I
b = 0
8.88264 2.02988I 15.5000 + 44.1304I
17
III. I
v
1
= ha, v
2
+ b + 3v 1, v
4
5v
3
+ 7v
2
2v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
7
=
1
0
a
11
=
0
v
2
3v + 1
a
6
=
1
v
3
+ 4v
2
4v
a
9
=
v
3
+ 4v
2
4v + 1
v
3
5v
2
+ 7v 2
a
10
=
v
2
+ 3v 1
v
2
3v + 1
a
5
=
v
2
+ 3v 1
v
3
+ 5v
2
7v + 2
a
2
=
v
2
2v + 1
v
3
5v
2
+ 7v 2
a
1
=
v
2
3v + 1
v
3
5v
2
+ 7v 2
a
4
=
v
0
a
12
=
v + 2
v 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2v
3
6v
2
+ 11v 17
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
u
4
c
4
(u + 1)
4
c
5
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
6
, c
9
u
4
+ u
2
+ u + 1
c
8
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
10
, c
12
u
4
+ u
2
u + 1
c
11
u
4
2u
3
+ 3u
2
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
y
4
y
3
+ 2y
2
+ 7y + 4
c
6
, c
9
, c
10
c
12
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
8
, c
11
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.100768 + 0.400532I
a = 0
b = 0.547424 1.120870I
4.26996 7.64338I 15.0849 + 3.8174I
v = 0.100768 0.400532I
a = 0
b = 0.547424 + 1.120870I
4.26996 + 7.64338I 15.0849 3.8174I
v = 2.39923 + 0.32564I
a = 0
b = 0.547424 + 0.585652I
0.66484 1.39709I 1.58487 + 5.38446I
v = 2.39923 0.32564I
a = 0
b = 0.547424 0.585652I
0.66484 + 1.39709I 1.58487 5.38446I
21
IV. I
v
2
= ha, 3v
5
38v
4
+ · · · + 67b 65, v
6
+ 8v
4
+ 2v
3
+ 4v
2
+ v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
7
=
1
0
a
11
=
0
0.0447761v
5
+ 0.567164v
4
+ ··· + 0.283582v + 0.970149
a
6
=
1
0.373134v
5
0.0597015v
4
+ ··· 2.02985v 1.41791
a
9
=
0.373134v
5
0.0597015v
4
+ ··· 2.02985v 0.417910
v
5
+ 8v
3
+ 2v
2
+ 4v + 1
a
10
=
0.0447761v
5
0.567164v
4
+ ··· 0.283582v 0.970149
0.0447761v
5
+ 0.567164v
4
+ ··· + 0.283582v + 0.970149
a
5
=
0.626866v
5
0.0597015v
4
+ ··· + 1.97015v + 0.582090
v
5
8v
3
2v
2
4v 1
a
2
=
0.626866v
5
+ 0.0597015v
4
+ ··· 0.970149v 0.582090
v
5
+ 8v
3
+ 2v
2
+ 4v + 1
a
1
=
0.626866v
5
+ 0.0597015v
4
+ ··· 1.97015v 0.582090
v
5
+ 8v
3
+ 2v
2
+ 4v + 1
a
4
=
v
0
a
12
=
0.567164v
5
+ 0.149254v
4
+ ··· 0.925373v 0.955224
0.776119v
5
+ 0.164179v
4
+ ··· + 1.58209v + 2.14925
(ii) Obstruction class = 1
(iii) Cusp Shapes =
85
67
v
5
27
67
v
4
620
67
v
3
363
67
v
2
+
154
67
v
859
67
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
(u
3
u
2
+ 1)
2
c
6
, c
9
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
8
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
10
, c
12
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
11
u
6
3u
5
+ 4u
4
2u
3
+ 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
(y
3
y
2
+ 2y 1)
2
c
6
, c
9
, c
10
c
12
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
8
, c
11
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.175218 + 0.614017I
a = 0
b = 0.498832 + 1.001300I
1.91067 2.82812I 8.91986 + 1.90022I
v = 0.175218 0.614017I
a = 0
b = 0.498832 1.001300I
1.91067 + 2.82812I 8.91986 1.90022I
v = 0.307599 + 0.479689I
a = 0
b = 0.284920 1.115140I
6.04826 14.4399 + 2.5036I
v = 0.307599 0.479689I
a = 0
b = 0.284920 + 1.115140I
6.04826 14.4399 2.5036I
v = 0.13238 + 2.74513I
a = 0
b = 0.713912 + 0.305839I
1.91067 2.82812I 14.1402 + 3.6935I
v = 0.13238 2.74513I
a = 0
b = 0.713912 0.305839I
1.91067 + 2.82812I 14.1402 3.6935I
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
2
3u + 1)
2
(u
81
+ 33u
80
+ ··· + 130u + 1)
c
2
((u 1)
10
)(u
2
+ u 1)
2
(u
81
13u
80
+ ··· 12u + 1)
c
3
u
10
(u
2
+ u 1)
2
(u
81
3u
80
+ ··· + 1024u + 1024)
c
4
((u + 1)
10
)(u
2
u 1)
2
(u
81
13u
80
+ ··· 12u + 1)
c
5
(u
3
u
2
+ 1)
2
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)(u
4
+ 3u
3
+ 8u
2
+ 3u + 1)
· (u
81
+ 5u
80
+ ··· 47488u + 22208)
c
6
(u
4
+ u
2
+ u + 1)(u
4
+ 3u
3
+ 8u
2
+ 3u + 1)
· (u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
81
+ u
80
+ ··· + 8905262u + 2124511)
c
7
u
10
(u
2
u 1)
2
(u
81
3u
80
+ ··· + 1024u + 1024)
c
8
(u
2
+ 3u + 1)
2
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
81
4u
80
+ ··· 5u + 1)
c
9
(u
2
+ u + 1)
2
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
81
+ 4u
80
+ ··· + 83u 1)
c
10
u
4
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
81
+ 8u
80
+ ··· + 256u + 16)
c
11
(u
2
u + 1)
2
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
81
+ 30u
80
+ ··· + 6303u 1)
c
12
(u
2
u + 1)
2
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
81
+ 4u
80
+ ··· + 83u 1)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
2
7y + 1)
2
(y
81
+ 43y
80
+ ··· + 5274y 1)
c
2
, c
4
((y 1)
10
)(y
2
3y + 1)
2
(y
81
33y
80
+ ··· + 130y 1)
c
3
, c
7
y
10
(y
2
3y + 1)
2
(y
81
+ 57y
80
+ ··· 2.77873 × 10
7
y 1048576)
c
5
((y
3
y
2
+ 2y 1)
2
)(y
4
y
3
+ 2y
2
+ 7y + 4)(y
4
+ 7y
3
+ ··· + 7y + 1)
· (y
81
+ 103y
80
+ ··· 19451522048y 493195264)
c
6
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
+ 47y
80
+ ··· + 59668081079090y 4513546989121)
c
8
((y
2
7y + 1)
2
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
81
6y
80
+ ··· + 11y 1)
c
9
, c
12
(y
2
+ y + 1)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
+ 30y
80
+ ··· + 6303y 1)
c
10
y
4
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
81
20y
80
+ ··· 1152y 256)
c
11
((y
2
+ y + 1)
2
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
81
+ 46y
80
+ ··· + 39786411y 1)
27