12n
0127
(K12n
0127
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 8 3 10 12 6 5 9 11
Solving Sequence
8,10 3,7
4 6 5 11 2 1 9 12
c
7
c
3
c
6
c
5
c
10
c
2
c
1
c
9
c
11
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h5.41187 × 10
277
u
67
3.29717 × 10
278
u
66
+ ··· + 7.63032 × 10
279
b + 2.06591 × 10
280
,
1.99190 × 10
278
u
67
1.24347 × 10
279
u
66
+ ··· + 1.41959 × 10
279
a + 5.26734 × 10
280
,
u
68
6u
67
+ ··· + 992u + 64i
I
u
2
= hu
8
3u
6
+ u
5
+ 4u
4
2u
3
u
2
+ b + 2u 1, u
8
+ 2u
7
+ 2u
6
5u
5
u
4
+ 5u
3
u
2
+ a,
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
I
v
1
= ha, 186v
5
+ 1767v
4
16759v
3
+ 279v
2
+ 385b 93v + 306, v
6
10v
5
+ 95v
4
48v
3
+ 15v
2
5v + 1i
* 3 irreducible components of dim
C
= 0, with total 83 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5.41 × 10
277
u
67
3.30 × 10
278
u
66
+ · · · + 7.63 × 10
279
b + 2.07 ×
10
280
, 1.99 × 10
278
u
67
1.24 × 10
279
u
66
+ · · · + 1.42 × 10
279
a + 5.27 ×
10
280
, u
68
6u
67
+ · · · + 992u + 64i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
3
=
0.140315u
67
+ 0.875931u
66
+ ··· 399.413u 37.1045
0.00709259u
67
+ 0.0432114u
66
+ ··· 24.8919u 2.70750
a
7
=
1
u
2
a
4
=
0.140548u
67
+ 0.877681u
66
+ ··· 399.309u 36.5756
0.00717314u
67
+ 0.0436428u
66
+ ··· 25.2257u 2.73000
a
6
=
0.0867373u
67
+ 0.540807u
66
+ ··· 250.013u 21.8923
0.00337015u
67
+ 0.0205084u
66
+ ··· 14.4347u 1.57057
a
5
=
0.0833671u
67
+ 0.520298u
66
+ ··· 235.578u 20.3217
0.00337015u
67
+ 0.0205084u
66
+ ··· 14.4347u 1.57057
a
11
=
0.118608u
67
+ 0.755698u
66
+ ··· 203.655u 6.99277
0.00539155u
67
+ 0.0336077u
66
+ ··· 12.9981u 0.898136
a
2
=
0.0830107u
67
+ 0.517632u
66
+ ··· 243.251u 23.6948
0.00363676u
67
+ 0.0222357u
66
+ ··· 13.9337u 1.53678
a
1
=
0.0181153u
67
+ 0.110616u
66
+ ··· 71.0211u 7.16788
u
2
a
9
=
0.128840u
67
+ 0.819695u
66
+ ··· 230.862u 8.73309
0.00484013u
67
+ 0.0303889u
66
+ ··· 12.2087u 0.842183
a
12
=
0.126251u
67
0.763024u
66
+ ··· + 580.255u + 57.9332
0.000316220u
67
0.00143516u
66
+ ··· + 6.38612u + 0.783678
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.416483u
67
+ 2.60331u
66
+ ··· 1160.89u 97.1731
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
68
+ 72u
67
+ ··· 116u + 1
c
2
, c
4
u
68
12u
67
+ ··· + 4u 1
c
3
, c
6
u
68
+ 3u
67
+ ··· + 2048u + 512
c
5
u
68
+ 4u
67
+ ··· + 20u
2
1
c
7
u
68
+ 6u
67
+ ··· 992u + 64
c
8
, c
11
u
68
+ 5u
67
+ ··· 61u + 1
c
9
u
68
4u
67
+ ··· 1569175u 179693
c
10
u
68
8u
67
+ ··· 679u + 1423
c
12
u
68
+ 33u
67
+ ··· 4365u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
68
140y
67
+ ··· + 13088y + 1
c
2
, c
4
y
68
72y
67
+ ··· + 116y + 1
c
3
, c
6
y
68
51y
67
+ ··· 1048576y + 262144
c
5
y
68
16y
67
+ ··· 40y + 1
c
7
y
68
+ 30y
67
+ ··· 332800y + 4096
c
8
, c
11
y
68
+ 33y
67
+ ··· 4365y + 1
c
9
y
68
20y
67
+ ··· 70781434415y + 32289574249
c
10
y
68
68y
67
+ ··· + 88237y + 2024929
c
12
y
68
+ 9y
67
+ ··· 19115909y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.950113 + 0.315579I
a = 0.548757 0.167876I
b = 0.776522 0.767567I
1.45198 0.17538I 0
u = 0.950113 0.315579I
a = 0.548757 + 0.167876I
b = 0.776522 + 0.767567I
1.45198 + 0.17538I 0
u = 0.138014 + 0.941313I
a = 1.52735 0.38576I
b = 0.026016 + 0.803652I
1.98118 0.16998I 0
u = 0.138014 0.941313I
a = 1.52735 + 0.38576I
b = 0.026016 0.803652I
1.98118 + 0.16998I 0
u = 0.985804 + 0.387544I
a = 0.0078436 0.0769643I
b = 0.113466 0.711289I
3.23957 1.57241I 0
u = 0.985804 0.387544I
a = 0.0078436 + 0.0769643I
b = 0.113466 + 0.711289I
3.23957 + 1.57241I 0
u = 0.654795 + 0.664515I
a = 0.052917 0.398943I
b = 0.109744 + 0.545343I
1.99133 + 1.66625I 0. 3.30828I
u = 0.654795 0.664515I
a = 0.052917 + 0.398943I
b = 0.109744 0.545343I
1.99133 1.66625I 0. + 3.30828I
u = 0.918521 + 0.022770I
a = 0.80746 3.11284I
b = 0.45158 1.99901I
2.78363 2.76140I 0. + 6.78295I
u = 0.918521 0.022770I
a = 0.80746 + 3.11284I
b = 0.45158 + 1.99901I
2.78363 + 2.76140I 0. 6.78295I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.618022 + 0.678734I
a = 0.34805 + 1.72657I
b = 0.0123186 + 0.1252700I
7.66872 + 1.43842I 12.36030 + 0.I
u = 0.618022 0.678734I
a = 0.34805 1.72657I
b = 0.0123186 0.1252700I
7.66872 1.43842I 12.36030 + 0.I
u = 0.833182 + 0.382913I
a = 1.22956 1.32718I
b = 0.0823456 0.0914731I
9.13954 + 3.03771I 6.42466 + 6.40081I
u = 0.833182 0.382913I
a = 1.22956 + 1.32718I
b = 0.0823456 + 0.0914731I
9.13954 3.03771I 6.42466 6.40081I
u = 0.343117 + 1.102390I
a = 1.62260 + 0.06591I
b = 1.11538 1.08043I
1.02080 2.73193I 0
u = 0.343117 1.102390I
a = 1.62260 0.06591I
b = 1.11538 + 1.08043I
1.02080 + 2.73193I 0
u = 0.091668 + 1.182840I
a = 1.058340 + 0.288071I
b = 0.110946 0.754708I
5.18749 3.49319I 0
u = 0.091668 1.182840I
a = 1.058340 0.288071I
b = 0.110946 + 0.754708I
5.18749 + 3.49319I 0
u = 1.058570 + 0.536792I
a = 0.0374936 + 0.0394319I
b = 0.072006 + 0.563424I
2.39963 + 7.06465I 0
u = 1.058570 0.536792I
a = 0.0374936 0.0394319I
b = 0.072006 0.563424I
2.39963 7.06465I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.291235 + 0.741989I
a = 1.43685 0.21711I
b = 0.423071 + 0.457603I
0.59153 2.55241I 2.37006 + 1.53670I
u = 0.291235 0.741989I
a = 1.43685 + 0.21711I
b = 0.423071 0.457603I
0.59153 + 2.55241I 2.37006 1.53670I
u = 0.284392 + 1.184020I
a = 1.348990 + 0.014290I
b = 0.066230 0.901010I
4.78405 + 4.34186I 0
u = 0.284392 1.184020I
a = 1.348990 0.014290I
b = 0.066230 + 0.901010I
4.78405 4.34186I 0
u = 0.378527 + 1.199800I
a = 0.185821 0.027577I
b = 0.08329 + 1.60214I
3.90942 3.06813I 0
u = 0.378527 1.199800I
a = 0.185821 + 0.027577I
b = 0.08329 1.60214I
3.90942 + 3.06813I 0
u = 0.618286 + 1.143470I
a = 0.941109 + 0.552542I
b = 0.161234 + 0.197997I
9.06891 + 3.72651I 0
u = 0.618286 1.143470I
a = 0.941109 0.552542I
b = 0.161234 0.197997I
9.06891 3.72651I 0
u = 1.215690 + 0.466052I
a = 0.729712 + 0.700660I
b = 0.98247 + 1.78974I
1.26231 4.39904I 0
u = 1.215690 0.466052I
a = 0.729712 0.700660I
b = 0.98247 1.78974I
1.26231 + 4.39904I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.533248 + 0.422514I
a = 3.12926 + 0.99004I
b = 0.520884 + 1.056390I
1.175210 0.433161I 4.73090 + 4.14534I
u = 0.533248 0.422514I
a = 3.12926 0.99004I
b = 0.520884 1.056390I
1.175210 + 0.433161I 4.73090 4.14534I
u = 0.395435 + 1.259920I
a = 1.202320 0.400059I
b = 0.210830 0.120552I
13.78770 0.65730I 0
u = 0.395435 1.259920I
a = 1.202320 + 0.400059I
b = 0.210830 + 0.120552I
13.78770 + 0.65730I 0
u = 0.195281 + 1.367220I
a = 0.161197 + 0.187003I
b = 0.03055 1.73074I
8.15277 0.56922I 0
u = 0.195281 1.367220I
a = 0.161197 0.187003I
b = 0.03055 + 1.73074I
8.15277 + 0.56922I 0
u = 0.501266 + 1.311640I
a = 0.032263 0.145766I
b = 0.00664 1.54510I
6.75213 + 7.96693I 0
u = 0.501266 1.311640I
a = 0.032263 + 0.145766I
b = 0.00664 + 1.54510I
6.75213 7.96693I 0
u = 0.651697 + 1.252300I
a = 1.368070 0.194338I
b = 0.50799 1.66891I
1.42714 5.94125I 0
u = 0.651697 1.252300I
a = 1.368070 + 0.194338I
b = 0.50799 + 1.66891I
1.42714 + 5.94125I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443948 + 0.381193I
a = 0.023452 0.289831I
b = 0.092531 1.256890I
3.20421 1.15270I 2.54366 + 10.12386I
u = 0.443948 0.381193I
a = 0.023452 + 0.289831I
b = 0.092531 + 1.256890I
3.20421 + 1.15270I 2.54366 10.12386I
u = 0.68544 + 1.24203I
a = 0.920678 0.419746I
b = 0.202383 0.229028I
11.5445 8.9372I 0
u = 0.68544 1.24203I
a = 0.920678 + 0.419746I
b = 0.202383 + 0.229028I
11.5445 + 8.9372I 0
u = 0.047717 + 0.545973I
a = 0.040233 + 0.322065I
b = 0.19956 + 1.40398I
2.67134 + 4.86258I 14.4423 3.8383I
u = 0.047717 0.545973I
a = 0.040233 0.322065I
b = 0.19956 1.40398I
2.67134 4.86258I 14.4423 + 3.8383I
u = 0.53438 + 1.35483I
a = 1.200600 + 0.014989I
b = 0.49203 + 1.82310I
6.53057 + 2.65488I 0
u = 0.53438 1.35483I
a = 1.200600 0.014989I
b = 0.49203 1.82310I
6.53057 2.65488I 0
u = 0.477410 + 0.194259I
a = 3.46449 0.24479I
b = 0.066672 + 0.494530I
1.07758 + 1.62874I 1.55460 6.14952I
u = 0.477410 0.194259I
a = 3.46449 + 0.24479I
b = 0.066672 0.494530I
1.07758 1.62874I 1.55460 + 6.14952I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.72857 + 1.29465I
a = 1.294820 + 0.292927I
b = 0.44191 + 1.67576I
4.00028 + 11.30660I 0
u = 0.72857 1.29465I
a = 1.294820 0.292927I
b = 0.44191 1.67576I
4.00028 11.30660I 0
u = 0.199150 + 0.463613I
a = 5.65825 + 2.26682I
b = 0.979716 + 0.919145I
1.11507 2.15821I 17.5757 + 1.3433I
u = 0.199150 0.463613I
a = 5.65825 2.26682I
b = 0.979716 0.919145I
1.11507 + 2.15821I 17.5757 1.3433I
u = 0.207672 + 0.089139I
a = 11.0630 + 18.1211I
b = 0.455149 + 0.270879I
1.10951 2.08005I 43.7323 + 52.4587I
u = 0.207672 0.089139I
a = 11.0630 18.1211I
b = 0.455149 0.270879I
1.10951 + 2.08005I 43.7323 52.4587I
u = 1.06862 + 1.46334I
a = 1.083940 0.489279I
b = 1.02549 2.05791I
10.9823 + 16.7933I 0
u = 1.06862 1.46334I
a = 1.083940 + 0.489279I
b = 1.02549 + 2.05791I
10.9823 16.7933I 0
u = 1.00127 + 1.57480I
a = 1.057930 + 0.383092I
b = 1.22819 + 2.06366I
8.36607 10.64720I 0
u = 1.00127 1.57480I
a = 1.057930 0.383092I
b = 1.22819 2.06366I
8.36607 + 10.64720I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.122992
a = 7.00758
b = 0.657961
1.12640 9.50710
u = 1.18225 + 1.81842I
a = 0.873443 0.339937I
b = 1.41202 2.62610I
14.9486 + 6.6050I 0
u = 1.18225 1.81842I
a = 0.873443 + 0.339937I
b = 1.41202 + 2.62610I
14.9486 6.6050I 0
u = 2.21003 + 0.87540I
a = 0.404299 0.141048I
b = 2.64545 2.40849I
8.52431 6.48393I 0
u = 2.21003 0.87540I
a = 0.404299 + 0.141048I
b = 2.64545 + 2.40849I
8.52431 + 6.48393I 0
u = 2.40291
a = 0.382796
b = 3.59332
4.25382 0
u = 0.40837 + 2.39079I
a = 0.860811 + 0.059303I
b = 3.47268 + 1.22842I
5.26056 3.80306I 0
u = 0.40837 2.39079I
a = 0.860811 0.059303I
b = 3.47268 1.22842I
5.26056 + 3.80306I 0
11
II. I
u
2
= hu
8
3u
6
+ u
5
+ 4u
4
2u
3
u
2
+ b + 2u 1, u
8
+ 2u
7
+ 2u
6
5u
5
u
4
+ 5u
3
u
2
+ a, u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
8
=
1
0
a
10
=
0
u
a
3
=
u
8
2u
7
2u
6
+ 5u
5
+ u
4
5u
3
+ u
2
u
8
+ 3u
6
u
5
4u
4
+ 2u
3
+ u
2
2u + 1
a
7
=
1
u
2
a
4
=
u
8
2u
7
2u
6
+ 5u
5
+ u
4
5u
3
+ u
2
u
8
+ 3u
6
u
5
4u
4
+ 2u
3
+ u
2
2u + 1
a
6
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
11
=
u
5
+ 2u
3
u
u
5
u
3
+ u
a
2
=
u
8
2u
7
2u
6
+ 5u
5
+ u
4
5u
3
+ 2u
2
1
u
8
+ 3u
6
u
5
4u
4
+ 2u
3
2u + 1
a
1
=
u
2
1
u
2
a
9
=
u
u
3
+ u
a
12
=
u
8
3u
6
+ 3u
4
1
u
8
+ 2u
6
2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
8
9u
7
7u
6
+ 22u
5
2u
4
23u
3
+ 13u
2
u 9
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
8
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
9
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
10
, c
12
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
11
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
7
, c
9
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
8
, c
11
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
10
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.939568 0.981640I
b = 0.457852 1.072010I
3.42837 + 2.09337I 8.61953 2.85927I
u = 0.772920 0.510351I
a = 0.939568 + 0.981640I
b = 0.457852 + 1.072010I
3.42837 2.09337I 8.61953 + 2.85927I
u = 0.825933
a = 2.14893
b = 1.46592
0.446489 5.48680
u = 1.173910 + 0.391555I
a = 0.119081 + 0.409451I
b = 0.522253 + 0.392004I
2.72642 1.33617I 5.51122 2.15019I
u = 1.173910 0.391555I
a = 0.119081 0.409451I
b = 0.522253 0.392004I
2.72642 + 1.33617I 5.51122 + 2.15019I
u = 0.141484 + 0.739668I
a = 2.26219 + 2.13290I
b = 1.63880 0.65075I
1.02799 2.45442I 5.09778 + 12.45976I
u = 0.141484 0.739668I
a = 2.26219 2.13290I
b = 1.63880 + 0.65075I
1.02799 + 2.45442I 5.09778 12.45976I
u = 1.172470 + 0.500383I
a = 0.016164 0.378317I
b = 0.425734 0.444312I
1.95319 + 7.08493I 9.51486 6.49599I
u = 1.172470 0.500383I
a = 0.016164 + 0.378317I
b = 0.425734 + 0.444312I
1.95319 7.08493I 9.51486 + 6.49599I
15
III. I
v
1
=
ha, 186v
5
+1767v
4
+· · ·+385b+306, v
6
10v
5
+95v
4
48v
3
+15v
2
5v +1i
(i) Arc colorings
a
8
=
1
0
a
10
=
v
0
a
3
=
0
0.483117v
5
4.58961v
4
+ ··· + 0.241558v 0.794805
a
7
=
1
0
a
4
=
0.483117v
5
+ 4.58961v
4
+ ··· 0.241558v + 0.794805
0.483117v
5
4.58961v
4
+ ··· + 0.241558v 0.794805
a
6
=
1
0.207792v
5
1.97403v
4
+ ··· + 0.103896v + 1.41299
a
5
=
0.207792v
5
+ 1.97403v
4
+ ··· 0.103896v 0.412987
0.207792v
5
1.97403v
4
+ ··· + 0.103896v + 1.41299
a
11
=
0.241558v
5
+ 2.36623v
4
+ ··· 1.62078v + 0.483117
0.345455v
5
3.38182v
4
+ ··· + 5.07273v 0.690909
a
2
=
1
0.207792v
5
1.97403v
4
+ ··· + 0.103896v + 1.41299
a
1
=
1
0
a
9
=
0.103896v
5
1.01558v
4
+ ··· + 3.45195v 0.207792
0.345455v
5
3.38182v
4
+ ··· + 5.07273v 0.690909
a
12
=
0.101299v
5
+ 1.03377v
4
+ ··· 1.55065v 0.483117
0.345455v
5
3.38182v
4
+ ··· + 5.07273v 1.69091
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2033
385
v
5
4009
77
v
4
+
190301
385
v
3
71002
385
v
2
+
3599
77
v
5364
385
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
(u
3
+ 3u
2
+ 2u 1)
2
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
u
6
c
8
, c
12
(u
2
+ u + 1)
3
c
9
, c
10
u
6
+ 2u
5
+ 7u
4
8u
3
+ 7u
2
3u + 1
c
11
(u
2
u + 1)
3
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
(y
3
5y
2
+ 10y 1)
2
c
7
y
6
c
8
, c
11
, c
12
(y
2
+ y + 1)
3
c
9
, c
10
y
6
+ 10y
5
+ 95y
4
+ 48y
3
+ 15y
2
+ 5y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.299729 + 0.124916I
a = 0
b = 0.215080 + 1.307140I
3.02413 + 0.79824I 7.24138 + 7.14502I
v = 0.299729 0.124916I
a = 0
b = 0.215080 1.307140I
3.02413 0.79824I 7.24138 7.14502I
v = 0.041684 + 0.322031I
a = 0
b = 0.215080 1.307140I
3.02413 4.85801I 8.78307 + 4.05565I
v = 0.041684 0.322031I
a = 0
b = 0.215080 + 1.307140I
3.02413 + 4.85801I 8.78307 4.05565I
v = 4.74195 + 8.21331I
a = 0
b = 0.569840
1.11345 2.02988I 37.9583 74.4205I
v = 4.74195 8.21331I
a = 0
b = 0.569840
1.11345 + 2.02988I 37.9583 + 74.4205I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
3
u
2
+ 2u 1)
2
(u
68
+ 72u
67
+ ··· 116u + 1)
c
2
((u 1)
9
)(u
3
+ u
2
1)
2
(u
68
12u
67
+ ··· + 4u 1)
c
3
u
9
(u
3
u
2
+ 2u 1)
2
(u
68
+ 3u
67
+ ··· + 2048u + 512)
c
4
((u + 1)
9
)(u
3
u
2
+ 1)
2
(u
68
12u
67
+ ··· + 4u 1)
c
5
(u
3
+ 3u
2
+ 2u 1)
2
· (u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
· (u
68
+ 4u
67
+ ··· + 20u
2
1)
c
6
u
9
(u
3
+ u
2
+ 2u + 1)
2
(u
68
+ 3u
67
+ ··· + 2048u + 512)
c
7
u
6
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
68
+ 6u
67
+ ··· 992u + 64)
c
8
(u
2
+ u + 1)
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
68
+ 5u
67
+ ··· 61u + 1)
c
9
(u
6
+ 2u
5
+ 7u
4
8u
3
+ 7u
2
3u + 1)
· (u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
68
4u
67
+ ··· 1569175u 179693)
c
10
(u
6
+ 2u
5
+ 7u
4
8u
3
+ 7u
2
3u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
68
8u
67
+ ··· 679u + 1423)
c
11
(u
2
u + 1)
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
68
+ 5u
67
+ ··· 61u + 1)
c
12
(u
2
+ u + 1)
3
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
68
+ 33u
67
+ ··· 4365u + 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
3
+ 3y
2
+ 2y 1)
2
(y
68
140y
67
+ ··· + 13088y + 1)
c
2
, c
4
((y 1)
9
)(y
3
y
2
+ 2y 1)
2
(y
68
72y
67
+ ··· + 116y + 1)
c
3
, c
6
y
9
(y
3
+ 3y
2
+ 2y 1)
2
(y
68
51y
67
+ ··· 1048576y + 262144)
c
5
(y
3
5y
2
+ 10y 1)
2
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
68
16y
67
+ ··· 40y + 1)
c
7
y
6
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
68
+ 30y
67
+ ··· 332800y + 4096)
c
8
, c
11
(y
2
+ y + 1)
3
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
68
+ 33y
67
+ ··· 4365y + 1)
c
9
(y
6
+ 10y
5
+ 95y
4
+ 48y
3
+ 15y
2
+ 5y + 1)
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
68
20y
67
+ ··· 70781434415y + 32289574249)
c
10
(y
6
+ 10y
5
+ 95y
4
+ 48y
3
+ 15y
2
+ 5y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
68
68y
67
+ ··· + 88237y + 2024929)
c
12
((y
2
+ y + 1)
3
)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
68
+ 9y
67
+ ··· 19115909y + 1)
21