12n
0128
(K12n
0128
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 10 3 6 12 8 1 9
Solving Sequence
3,8 4,10
11 7 6 9 5 2 1 12
c
3
c
10
c
7
c
6
c
8
c
5
c
2
c
1
c
12
c
4
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.10179 × 10
326
u
84
+ 4.59940 × 10
326
u
83
+ ··· + 6.70794 × 10
327
b + 9.84549 × 10
328
,
1.92301 × 10
326
u
84
4.87952 × 10
326
u
83
+ ··· + 2.68317 × 10
328
a 1.80541 × 10
329
,
u
85
+ 3u
84
+ ··· + 2560u 512i
I
u
2
= hb
2
2bu 3b + 8u + 13, a, u
2
+ u 1i
I
v
1
= ha, 117084v
8
101146v
7
+ ··· + 178147b 213819,
v
9
+ v
8
+ 12v
7
+ 7v
6
+ 37v
5
v
4
+ 10v
2
+ 5v + 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.10 × 10
326
u
84
+ 4.60 × 10
326
u
83
+ · · · + 6.71 × 10
327
b + 9.85 ×
10
328
, 1.92 × 10
326
u
84
4.88 × 10
326
u
83
+ · · · + 2.68 × 10
328
a 1.81 ×
10
329
, u
85
+ 3u
84
+ · · · + 2560u 512i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.00716693u
84
+ 0.0181856u
83
+ ··· 41.0816u + 6.72864
0.0164251u
84
0.0685666u
83
+ ··· + 14.1484u 14.6774
a
11
=
0.00716693u
84
+ 0.0181856u
83
+ ··· 41.0816u + 6.72864
0.0173695u
84
0.0700008u
83
+ ··· + 26.3047u 16.3747
a
7
=
u
u
a
6
=
0.0128640u
84
+ 0.0390675u
83
+ ··· 60.0504u + 9.18109
0.0370542u
84
+ 0.136353u
83
+ ··· 145.401u + 47.2282
a
9
=
0.0104888u
84
0.0265281u
83
+ ··· + 86.9445u 14.0203
0.00275780u
84
+ 0.00808818u
83
+ ··· + 16.3180u 2.98126
a
5
=
0.00825383u
84
+ 0.0201646u
83
+ ··· 65.1654u + 10.2484
0.00335614u
84
0.00827244u
83
+ ··· + 37.7731u 6.12557
a
2
=
0.00825383u
84
+ 0.0201646u
83
+ ··· 65.1654u + 10.2484
0.00223501u
84
+ 0.00636347u
83
+ ··· 21.7790u + 3.77196
a
1
=
0.0104888u
84
+ 0.0265281u
83
+ ··· 86.9445u + 14.0203
0.00223501u
84
+ 0.00636347u
83
+ ··· 21.7790u + 3.77196
a
12
=
0.000908687u
84
0.00204367u
83
+ ··· 16.4201u + 3.85488
0.0185413u
84
0.0750717u
83
+ ··· 7.29914u 9.22684
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.381801u
84
+ 1.38285u
83
+ ··· 1273.67u + 380.918
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
85
+ 38u
84
+ ··· 213u + 1
c
2
, c
4
u
85
12u
84
+ ··· u + 1
c
3
, c
7
u
85
3u
84
+ ··· + 2560u + 512
c
5
u
85
+ 3u
84
+ ··· + 112806u + 16279
c
6
u
85
u
84
+ ··· + 28266u + 22877
c
8
u
85
4u
84
+ ··· 5u + 1
c
9
, c
12
u
85
4u
84
+ ··· + 7u + 1
c
10
u
85
8u
84
+ ··· + 192u + 16
c
11
u
85
38u
84
+ ··· + 27u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
85
+ 30y
84
+ ··· + 27491y 1
c
2
, c
4
y
85
38y
84
+ ··· 213y 1
c
3
, c
7
y
85
+ 51y
84
+ ··· 3932160y 262144
c
5
y
85
81y
84
+ ··· + 5075593862y 265005841
c
6
y
85
57y
84
+ ··· 21266860578y 523357129
c
8
y
85
22y
84
+ ··· + 31y 1
c
9
, c
12
y
85
+ 38y
84
+ ··· + 27y 1
c
10
y
85
+ 20y
84
+ ··· + 12160y 256
c
11
y
85
+ 22y
84
+ ··· + 1735y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.079250 + 0.084385I
a = 0.314607 0.642851I
b = 0.263280 + 0.005137I
1.013250 + 0.170939I 0
u = 1.079250 0.084385I
a = 0.314607 + 0.642851I
b = 0.263280 0.005137I
1.013250 0.170939I 0
u = 1.111280 + 0.071551I
a = 0.643580 0.926472I
b = 0.321561 0.222730I
3.33969 + 2.83227I 0
u = 1.111280 0.071551I
a = 0.643580 + 0.926472I
b = 0.321561 + 0.222730I
3.33969 2.83227I 0
u = 0.129045 + 1.113980I
a = 1.74054 0.17640I
b = 1.96919 0.18618I
0.094102 1.056740I 0
u = 0.129045 1.113980I
a = 1.74054 + 0.17640I
b = 1.96919 + 0.18618I
0.094102 + 1.056740I 0
u = 0.210154 + 1.114290I
a = 0.839901 0.413606I
b = 1.63994 1.01283I
3.15620 + 2.51605I 0
u = 0.210154 1.114290I
a = 0.839901 + 0.413606I
b = 1.63994 + 1.01283I
3.15620 2.51605I 0
u = 0.433540 + 1.050740I
a = 0.587198 + 0.587186I
b = 0.993744 + 0.855462I
0.982642 + 0.642938I 0
u = 0.433540 1.050740I
a = 0.587198 0.587186I
b = 0.993744 0.855462I
0.982642 0.642938I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.257695 + 1.109990I
a = 0.04586 1.76277I
b = 0.070299 0.881993I
1.09681 + 2.37421I 0
u = 0.257695 1.109990I
a = 0.04586 + 1.76277I
b = 0.070299 + 0.881993I
1.09681 2.37421I 0
u = 0.262541 + 1.168940I
a = 0.497533 + 0.412605I
b = 1.021630 0.852821I
2.10819 3.90878I 0
u = 0.262541 1.168940I
a = 0.497533 0.412605I
b = 1.021630 + 0.852821I
2.10819 + 3.90878I 0
u = 0.218930 + 1.186920I
a = 0.438793 + 0.422340I
b = 1.29909 1.31313I
2.18193 1.17088I 0
u = 0.218930 1.186920I
a = 0.438793 0.422340I
b = 1.29909 + 1.31313I
2.18193 + 1.17088I 0
u = 0.758522 + 0.188313I
a = 1.47819 0.47702I
b = 2.18056 + 0.45533I
1.13123 4.17645I 11.8176 + 9.1818I
u = 0.758522 0.188313I
a = 1.47819 + 0.47702I
b = 2.18056 0.45533I
1.13123 + 4.17645I 11.8176 9.1818I
u = 0.341078 + 1.170670I
a = 1.71012 0.11107I
b = 2.09658 0.30512I
0.41725 + 6.01567I 0
u = 0.341078 1.170670I
a = 1.71012 + 0.11107I
b = 2.09658 + 0.30512I
0.41725 6.01567I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.041071 + 1.235810I
a = 0.35122 + 1.48542I
b = 0.799108 + 0.646539I
3.32593 3.12666I 0
u = 0.041071 1.235810I
a = 0.35122 1.48542I
b = 0.799108 0.646539I
3.32593 + 3.12666I 0
u = 1.206060 + 0.339502I
a = 0.333951 0.966861I
b = 0.172479 0.075194I
1.81678 5.27916I 0
u = 1.206060 0.339502I
a = 0.333951 + 0.966861I
b = 0.172479 + 0.075194I
1.81678 + 5.27916I 0
u = 0.573407 + 0.367957I
a = 0.02490 1.59180I
b = 0.90204 1.21732I
3.03530 2.32112I 18.2811 + 2.9821I
u = 0.573407 0.367957I
a = 0.02490 + 1.59180I
b = 0.90204 + 1.21732I
3.03530 + 2.32112I 18.2811 2.9821I
u = 0.091692 + 1.317030I
a = 0.134568 0.539810I
b = 0.21801 + 1.72217I
3.52281 0.13174I 0
u = 0.091692 1.317030I
a = 0.134568 + 0.539810I
b = 0.21801 1.72217I
3.52281 + 0.13174I 0
u = 0.413209 + 1.277050I
a = 0.33458 + 1.53181I
b = 0.762037 + 0.868186I
2.39077 + 8.65291I 0
u = 0.413209 1.277050I
a = 0.33458 1.53181I
b = 0.762037 0.868186I
2.39077 8.65291I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.312068 + 1.307370I
a = 0.183364 0.488108I
b = 0.82725 + 1.90837I
3.08119 5.55867I 0
u = 0.312068 1.307370I
a = 0.183364 + 0.488108I
b = 0.82725 1.90837I
3.08119 + 5.55867I 0
u = 0.459021 + 0.459779I
a = 1.51990 0.28470I
b = 2.42465 1.18474I
3.21369 + 0.63442I 17.2881 6.4476I
u = 0.459021 0.459779I
a = 1.51990 + 0.28470I
b = 2.42465 + 1.18474I
3.21369 0.63442I 17.2881 + 6.4476I
u = 0.634951 + 0.073211I
a = 0.544294 0.378389I
b = 0.448469 + 0.000623I
0.938890 0.000686I 9.17733 + 0.04419I
u = 0.634951 0.073211I
a = 0.544294 + 0.378389I
b = 0.448469 0.000623I
0.938890 + 0.000686I 9.17733 0.04419I
u = 1.237320 + 0.581154I
a = 0.335451 0.582811I
b = 0.266329 0.154538I
1.88882 + 2.34511I 0
u = 1.237320 0.581154I
a = 0.335451 + 0.582811I
b = 0.266329 + 0.154538I
1.88882 2.34511I 0
u = 0.326856 + 1.339410I
a = 0.750171 0.025748I
b = 1.332330 0.310227I
4.34006 0.60753I 0
u = 0.326856 1.339410I
a = 0.750171 + 0.025748I
b = 1.332330 + 0.310227I
4.34006 + 0.60753I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.143186 + 1.381320I
a = 0.727087 + 0.371136I
b = 1.59812 + 0.81572I
1.24862 + 7.38729I 0
u = 0.143186 1.381320I
a = 0.727087 0.371136I
b = 1.59812 0.81572I
1.24862 7.38729I 0
u = 0.607638 + 0.026477I
a = 0.314965 0.062706I
b = 5.61070 + 1.95263I
1.01649 + 2.08350I 108.2002 27.5787I
u = 0.607638 0.026477I
a = 0.314965 + 0.062706I
b = 5.61070 1.95263I
1.01649 2.08350I 108.2002 + 27.5787I
u = 0.573976 + 0.144239I
a = 0.630973 + 0.039451I
b = 3.74818 1.33751I
1.01583 1.80194I 34.3945 + 9.4437I
u = 0.573976 0.144239I
a = 0.630973 0.039451I
b = 3.74818 + 1.33751I
1.01583 + 1.80194I 34.3945 9.4437I
u = 0.581059
a = 0.632960
b = 0.432804
0.943887 9.70520
u = 0.64849 + 1.26742I
a = 0.718497 + 0.104136I
b = 1.213270 + 0.001074I
2.43921 5.21595I 0
u = 0.64849 1.26742I
a = 0.718497 0.104136I
b = 1.213270 0.001074I
2.43921 + 5.21595I 0
u = 1.40213 + 0.33857I
a = 0.330302 + 0.857940I
b = 0.097754 0.133086I
0.33638 10.54090I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40213 0.33857I
a = 0.330302 0.857940I
b = 0.097754 + 0.133086I
0.33638 + 10.54090I 0
u = 0.056938 + 0.544127I
a = 0.47075 2.43754I
b = 0.0150861 0.0630346I
5.59621 1.18326I 2.58478 2.54783I
u = 0.056938 0.544127I
a = 0.47075 + 2.43754I
b = 0.0150861 + 0.0630346I
5.59621 + 1.18326I 2.58478 + 2.54783I
u = 0.188367 + 0.482280I
a = 0.01185 + 1.83477I
b = 0.515477 0.218779I
1.59907 2.42394I 1.69948 + 4.54557I
u = 0.188367 0.482280I
a = 0.01185 1.83477I
b = 0.515477 + 0.218779I
1.59907 + 2.42394I 1.69948 4.54557I
u = 0.014000 + 0.513349I
a = 0.98858 + 2.43038I
b = 0.0540751 + 0.0186456I
4.86894 7.11123I 0.90699 + 6.44296I
u = 0.014000 0.513349I
a = 0.98858 2.43038I
b = 0.0540751 0.0186456I
4.86894 + 7.11123I 0.90699 6.44296I
u = 1.49443 + 0.02360I
a = 0.263064 0.608348I
b = 0.056186 + 0.172181I
0.90720 4.33616I 0
u = 1.49443 0.02360I
a = 0.263064 + 0.608348I
b = 0.056186 0.172181I
0.90720 + 4.33616I 0
u = 0.47007 + 1.42149I
a = 1.025930 0.210323I
b = 1.94222 0.59005I
3.61530 5.88108I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.47007 1.42149I
a = 1.025930 + 0.210323I
b = 1.94222 + 0.59005I
3.61530 + 5.88108I 0
u = 0.129721 + 0.460651I
a = 0.94046 + 1.36587I
b = 2.80445 + 1.09956I
2.08258 + 2.71217I 0.93392 9.03807I
u = 0.129721 0.460651I
a = 0.94046 1.36587I
b = 2.80445 1.09956I
2.08258 2.71217I 0.93392 + 9.03807I
u = 0.69533 + 1.35551I
a = 1.115150 0.202740I
b = 2.11433 0.55269I
1.45650 + 12.12210I 0
u = 0.69533 1.35551I
a = 1.115150 + 0.202740I
b = 2.11433 + 0.55269I
1.45650 12.12210I 0
u = 0.20084 + 1.51437I
a = 1.083660 + 0.427485I
b = 1.88224 + 0.54463I
9.43138 2.34122I 0
u = 0.20084 1.51437I
a = 1.083660 0.427485I
b = 1.88224 0.54463I
9.43138 + 2.34122I 0
u = 0.51519 + 1.44160I
a = 1.189150 + 0.430508I
b = 2.06507 + 0.51343I
8.12807 + 8.74738I 0
u = 0.51519 1.44160I
a = 1.189150 0.430508I
b = 2.06507 0.51343I
8.12807 8.74738I 0
u = 0.67286 + 1.43031I
a = 0.721546 + 0.163020I
b = 1.261450 + 0.117391I
7.12915 + 3.60494I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.67286 1.43031I
a = 0.721546 0.163020I
b = 1.261450 0.117391I
7.12915 3.60494I 0
u = 0.83986 + 1.36381I
a = 0.709212 0.012362I
b = 1.255120 0.185897I
4.36978 10.04380I 0
u = 0.83986 1.36381I
a = 0.709212 + 0.012362I
b = 1.255120 + 0.185897I
4.36978 + 10.04380I 0
u = 0.76822 + 1.41143I
a = 1.028460 + 0.202507I
b = 2.16194 + 0.54337I
3.7759 + 18.1504I 0
u = 0.76822 1.41143I
a = 1.028460 0.202507I
b = 2.16194 0.54337I
3.7759 18.1504I 0
u = 0.56721 + 1.54481I
a = 0.932269 + 0.216487I
b = 1.99467 + 0.56349I
6.15588 11.53790I 0
u = 0.56721 1.54481I
a = 0.932269 0.216487I
b = 1.99467 0.56349I
6.15588 + 11.53790I 0
u = 1.64677 + 0.04569I
a = 0.075386 0.147225I
b = 0.0593377 + 0.1023010I
8.84126 + 1.96210I 0
u = 1.64677 0.04569I
a = 0.075386 + 0.147225I
b = 0.0593377 0.1023010I
8.84126 1.96210I 0
u = 0.49039 + 1.61919I
a = 0.600613 0.046493I
b = 1.53138 0.09575I
6.55517 3.11546I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.49039 1.61919I
a = 0.600613 + 0.046493I
b = 1.53138 + 0.09575I
6.55517 + 3.11546I 0
u = 0.225615 + 0.193490I
a = 1.41404 + 1.72695I
b = 0.573669 1.131970I
0.60683 2.35987I 1.70647 + 4.72969I
u = 0.225615 0.193490I
a = 1.41404 1.72695I
b = 0.573669 + 1.131970I
0.60683 + 2.35987I 1.70647 4.72969I
u = 0.22938 + 1.72989I
a = 0.626650 + 0.057918I
b = 1.50572 + 0.17267I
7.76106 3.97762I 0
u = 0.22938 1.72989I
a = 0.626650 0.057918I
b = 1.50572 0.17267I
7.76106 + 3.97762I 0
13
II. I
u
2
= hb
2
2bu 3b + 8u + 13, a, u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u + 1
a
10
=
0
b
a
11
=
0
b
a
7
=
u
u
a
6
=
u
bu 2b + 6u + 8
a
9
=
2u + 1
b 3u 2
a
5
=
u
u
a
2
=
u
u 1
a
1
=
2u 1
u 1
a
12
=
8bu + 5b
5bu + 4b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 92bu + 67b 21u 44
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)
2
c
2
, c
3
(u
2
+ u 1)
2
c
4
, c
7
(u
2
u 1)
2
c
5
, c
6
u
4
3u
3
+ 8u
2
3u + 1
c
8
(u
2
+ 3u + 1)
2
c
9
(u
2
u + 1)
2
c
10
u
4
c
11
, c
12
(u
2
+ u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
7y + 1)
2
c
2
, c
3
, c
4
c
7
(y
2
3y + 1)
2
c
5
, c
6
y
4
+ 7y
3
+ 48y
2
+ 7y + 1
c
9
, c
11
, c
12
(y
2
+ y + 1)
2
c
10
y
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0
b = 2.11803 + 3.66854I
0.98696 + 2.02988I 35.5000 + 37.2022I
u = 0.618034
a = 0
b = 2.11803 3.66854I
0.98696 2.02988I 35.5000 37.2022I
u = 1.61803
a = 0
b = 0.118034 + 0.204441I
8.88264 2.02988I 35.5000 + 44.1304I
u = 1.61803
a = 0
b = 0.118034 0.204441I
8.88264 + 2.02988I 35.5000 44.1304I
17
III. I
v
1
= ha, 1.17 × 10
5
v
8
1.01 × 10
5
v
7
+ · · · + 1.78 × 10
5
b 2.14 ×
10
5
, v
9
+ v
8
+ · · · + 5v + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
v
0
a
4
=
1
0
a
10
=
0
0.657233v
8
+ 0.567767v
7
+ ··· + 9.16478v + 1.20024
a
11
=
0.0241374v
8
0.0627123v
7
+ ··· + 0.209905v 0.0894654
0.657233v
8
+ 0.567767v
7
+ ··· + 9.16478v + 1.20024
a
7
=
v
0
a
6
=
v
0.275340v
8
0.0465346v
7
+ ··· + 1.55676v 0.961481
a
9
=
0.177685v
8
+ 0.143932v
7
+ ··· + 2.33403v + 0.321875
1
a
5
=
0.177685v
8
+ 0.143932v
7
+ ··· + 2.33403v + 0.321875
1
a
2
=
0.177685v
8
0.143932v
7
+ ··· 2.33403v + 0.678125
1
a
1
=
0.177685v
8
0.143932v
7
+ ··· 2.33403v 0.321875
1
a
12
=
0.0347129v
8
0.0223692v
7
+ ··· 0.0767568v + 0.422617
0.355369v
8
+ 0.287863v
7
+ ··· + 4.66807v 0.356251
(ii) Obstruction class = 1
(iii) Cusp Shapes =
423971
178147
v
8
+
364904
178147
v
7
+
4951441
178147
v
6
+
2188309
178147
v
5
+
14403862
178147
v
4
3007434
178147
v
3
2178758
178147
v
2
+
4762398
178147
v
397589
178147
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
7
u
9
c
4
(u + 1)
9
c
5
, c
11
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
6
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
8
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
9
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
10
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
12
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
7
y
9
c
5
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
6
, c
10
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
8
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
9
, c
12
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.508863 + 0.531649I
a = 0
b = 0.225230 + 1.238240I
0.13850 + 2.09337I 7.58955 5.46639I
v = 0.508863 0.531649I
a = 0
b = 0.225230 1.238240I
0.13850 2.09337I 7.58955 + 5.46639I
v = 0.465349
a = 0
b = 1.77487
2.84338 11.8180
v = 0.234017 + 0.220643I
a = 0
b = 1.25758 + 1.97504I
2.26187 + 2.45442I 9.75362 + 6.63381I
v = 0.234017 0.220643I
a = 0
b = 1.25758 1.97504I
2.26187 2.45442I 9.75362 6.63381I
v = 0.65490 + 2.25183I
a = 0
b = 0.300113 0.434032I
6.01628 + 1.33617I 20.0794 3.5537I
v = 0.65490 2.25183I
a = 0
b = 0.300113 + 0.434032I
6.01628 1.33617I 20.0794 + 3.5537I
v = 0.11273 + 2.63847I
a = 0
b = 0.170352 + 0.451655I
5.24306 + 7.08493I 20.6685 5.3307I
v = 0.11273 2.63847I
a = 0
b = 0.170352 0.451655I
5.24306 7.08493I 20.6685 + 5.3307I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
2
3u + 1)
2
(u
85
+ 38u
84
+ ··· 213u + 1)
c
2
((u 1)
9
)(u
2
+ u 1)
2
(u
85
12u
84
+ ··· u + 1)
c
3
u
9
(u
2
+ u 1)
2
(u
85
3u
84
+ ··· + 2560u + 512)
c
4
((u + 1)
9
)(u
2
u 1)
2
(u
85
12u
84
+ ··· u + 1)
c
5
(u
4
3u
3
+ 8u
2
3u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
85
+ 3u
84
+ ··· + 112806u + 16279)
c
6
(u
4
3u
3
+ 8u
2
3u + 1)(u
9
+ u
8
+ ··· u 1)
· (u
85
u
84
+ ··· + 28266u + 22877)
c
7
u
9
(u
2
u 1)
2
(u
85
3u
84
+ ··· + 2560u + 512)
c
8
((u
2
+ 3u + 1)
2
)(u
9
+ 5u
8
+ ··· + u + 1)
· (u
85
4u
84
+ ··· 5u + 1)
c
9
(u
2
u + 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
85
4u
84
+ ··· + 7u + 1)
c
10
u
4
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
85
8u
84
+ ··· + 192u + 16)
c
11
(u
2
+ u + 1)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
85
38u
84
+ ··· + 27u + 1)
c
12
(u
2
+ u + 1)
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
85
4u
84
+ ··· + 7u + 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
2
7y + 1)
2
(y
85
+ 30y
84
+ ··· + 27491y 1)
c
2
, c
4
((y 1)
9
)(y
2
3y + 1)
2
(y
85
38y
84
+ ··· 213y 1)
c
3
, c
7
y
9
(y
2
3y + 1)
2
(y
85
+ 51y
84
+ ··· 3932160y 262144)
c
5
(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
85
81y
84
+ ··· + 5075593862y 265005841)
c
6
(y
4
+ 7y
3
+ 48y
2
+ 7y + 1)
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
85
57y
84
+ ··· 21266860578y 523357129)
c
8
(y
2
7y + 1)
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
85
22y
84
+ ··· + 31y 1)
c
9
, c
12
(y
2
+ y + 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
85
+ 38y
84
+ ··· + 27y 1)
c
10
y
4
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
85
+ 20y
84
+ ··· + 12160y 256)
c
11
((y
2
+ y + 1)
2
)(y
9
+ 7y
8
+ ··· + 13y 1)
· (y
85
+ 22y
84
+ ··· + 1735y 1)
23