12n
0130
(K12n
0130
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 11 3 10 7 12 8 5 9
Solving Sequence
7,10
8
3,11
6 4 5 12 2 1 9
c
7
c
10
c
6
c
3
c
5
c
11
c
2
c
1
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3.76813 × 10
29
u
45
2.42336 × 10
30
u
44
+ ··· + 4.57009 × 10
29
b 9.07426 × 10
29
,
3.88039 × 10
29
u
45
+ 2.51360 × 10
30
u
44
+ ··· + 4.57009 × 10
29
a + 2.62337 × 10
30
, u
46
7u
45
+ ··· 4u + 1i
I
u
2
= hb, 3u
8
5u
7
u
6
+ 9u
5
6u
4
3u
3
+ 10u
2
+ a 8u + 4, u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
I
u
3
= h−a
4
+ 6a
3
9a
2
+ b + 8a 3, a
5
6a
4
+ 9a
3
8a
2
+ 4a 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.77×10
29
u
45
2.42×10
30
u
44
+· · ·+4.57×10
29
b9.07×10
29
, 3.88×
10
29
u
45
+2.51×10
30
u
44
+· · ·+4.57×10
29
a+2.62×10
30
, u
46
7u
45
+· · ·4u+1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
3
=
0.849084u
45
5.50010u
44
+ ··· + 6.33741u 5.74030
0.824518u
45
+ 5.30264u
44
+ ··· + 0.443856u + 1.98557
a
11
=
u
u
3
+ u
a
6
=
0.894837u
45
6.29021u
44
+ ··· + 2.76162u 0.388790
0.321679u
45
+ 2.27756u
44
+ ··· 3.54255u + 1.78782
a
4
=
0.151962u
45
+ 1.36037u
44
+ ··· + 11.0404u 2.84289
1.07500u
45
+ 6.98658u
44
+ ··· + 0.922265u + 2.06759
a
5
=
1.14526u
45
7.71445u
44
+ ··· + 3.87163u 0.363285
0.210798u
45
+ 1.90057u
44
+ ··· 3.49688u + 2.14201
a
12
=
1.24464u
45
+ 8.36097u
44
+ ··· 6.15963u + 4.76903
0.0970325u
45
+ 0.230705u
44
+ ··· 1.32622u 1.14760
a
2
=
0.625495u
45
+ 4.50917u
44
+ ··· + 6.85570u 3.05357
0.280998u
45
+ 1.72030u
44
+ ··· + 4.29468u + 0.101646
a
1
=
0.760978u
45
5.14121u
44
+ ··· + 5.63281u 3.53294
0.0351355u
45
+ 0.537169u
44
+ ··· + 1.00892u + 1.13906
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.804859u
45
1.44838u
44
+ ··· + 36.2667u 15.6976
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
46
+ 61u
45
+ ··· + 62504u + 1
c
2
, c
4
u
46
11u
45
+ ··· + 260u 1
c
3
, c
6
u
46
+ 8u
45
+ ··· + 9216u + 512
c
5
, c
11
u
46
3u
45
+ ··· + 2u 1
c
7
, c
10
u
46
+ 7u
45
+ ··· + 4u + 1
c
8
u
46
17u
45
+ ··· 22u + 1
c
9
, c
12
u
46
+ 2u
45
+ ··· 32u + 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
46
141y
45
+ ··· 3903085204y + 1
c
2
, c
4
y
46
61y
45
+ ··· 62504y + 1
c
3
, c
6
y
46
+ 60y
45
+ ··· 71827456y + 262144
c
5
, c
11
y
46
y
45
+ ··· 32y + 1
c
7
, c
10
y
46
17y
45
+ ··· 22y + 1
c
8
y
46
+ 31y
45
+ ··· + 246y + 1
c
9
, c
12
y
46
+ 36y
45
+ ··· + 8704y + 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.814878 + 0.606452I
a = 0.433990 0.140786I
b = 0.472583 + 0.137648I
2.08149 + 2.37209I 0.76660 4.29323I
u = 0.814878 0.606452I
a = 0.433990 + 0.140786I
b = 0.472583 0.137648I
2.08149 2.37209I 0.76660 + 4.29323I
u = 0.874046
a = 11.2435
b = 0.211525
0.417366 104.440
u = 1.144360 + 0.047071I
a = 1.135140 + 0.536251I
b = 0.050832 0.907635I
0.67146 1.37994I 4.76488 + 1.12257I
u = 1.144360 0.047071I
a = 1.135140 0.536251I
b = 0.050832 + 0.907635I
0.67146 + 1.37994I 4.76488 1.12257I
u = 0.843227 + 0.031667I
a = 0.420881 + 0.781766I
b = 0.461740 1.101880I
4.57386 + 4.46577I 14.2933 6.3376I
u = 0.843227 0.031667I
a = 0.420881 0.781766I
b = 0.461740 + 1.101880I
4.57386 4.46577I 14.2933 + 6.3376I
u = 0.826663 + 0.817264I
a = 0.67352 + 1.82579I
b = 0.460674 + 0.701336I
5.00017 + 2.00257I 2.00000 8.95543I
u = 0.826663 0.817264I
a = 0.67352 1.82579I
b = 0.460674 0.701336I
5.00017 2.00257I 2.00000 + 8.95543I
u = 1.113100 + 0.352595I
a = 0.007224 0.637262I
b = 0.601579 0.034830I
3.69426 1.19679I 10.96091 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.113100 0.352595I
a = 0.007224 + 0.637262I
b = 0.601579 + 0.034830I
3.69426 + 1.19679I 10.96091 + 0.I
u = 0.819753
a = 0.799680
b = 0.0632515
1.19409 8.46120
u = 0.779990 + 0.229445I
a = 2.81222 + 3.37657I
b = 0.084278 + 0.529431I
0.282269 0.067141I 3.72609 + 3.28540I
u = 0.779990 0.229445I
a = 2.81222 3.37657I
b = 0.084278 0.529431I
0.282269 + 0.067141I 3.72609 3.28540I
u = 0.773116 + 0.916562I
a = 0.98201 1.48513I
b = 0.21958 2.31592I
6.74889 1.48702I 0
u = 0.773116 0.916562I
a = 0.98201 + 1.48513I
b = 0.21958 + 2.31592I
6.74889 + 1.48702I 0
u = 0.896390 + 0.827408I
a = 0.85433 + 1.70162I
b = 0.57354 + 1.89707I
9.88679 7.22887I 0
u = 0.896390 0.827408I
a = 0.85433 1.70162I
b = 0.57354 1.89707I
9.88679 + 7.22887I 0
u = 0.922092 + 0.823711I
a = 1.29796 1.16134I
b = 0.17166 1.89876I
9.81126 + 1.05399I 0
u = 0.922092 0.823711I
a = 1.29796 + 1.16134I
b = 0.17166 + 1.89876I
9.81126 1.05399I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622771 + 0.441733I
a = 0.35659 2.46347I
b = 0.120390 1.382460I
1.00247 2.85719I 1.18117 + 7.51903I
u = 0.622771 0.441733I
a = 0.35659 + 2.46347I
b = 0.120390 + 1.382460I
1.00247 + 2.85719I 1.18117 7.51903I
u = 0.964014 + 0.778863I
a = 0.66372 1.28651I
b = 0.201748 0.896900I
4.56947 + 3.99633I 0
u = 0.964014 0.778863I
a = 0.66372 + 1.28651I
b = 0.201748 + 0.896900I
4.56947 3.99633I 0
u = 0.342222 + 0.659201I
a = 0.463828 + 0.469807I
b = 0.814960 0.187703I
0.00959 1.79095I 3.07595 + 1.44696I
u = 0.342222 0.659201I
a = 0.463828 0.469807I
b = 0.814960 + 0.187703I
0.00959 + 1.79095I 3.07595 1.44696I
u = 0.534580 + 1.140310I
a = 0.535482 + 1.204310I
b = 0.85043 + 2.04924I
16.0716 8.0734I 0
u = 0.534580 1.140310I
a = 0.535482 1.204310I
b = 0.85043 2.04924I
16.0716 + 8.0734I 0
u = 0.517745 + 1.151250I
a = 0.203460 1.234010I
b = 0.12527 2.07856I
15.9425 + 0.1123I 0
u = 0.517745 1.151250I
a = 0.203460 + 1.234010I
b = 0.12527 + 2.07856I
15.9425 0.1123I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.147030 + 0.542395I
a = 0.049293 + 0.460049I
b = 0.722105 0.124793I
2.40464 + 6.60583I 0
u = 1.147030 0.542395I
a = 0.049293 0.460049I
b = 0.722105 + 0.124793I
2.40464 6.60583I 0
u = 0.925590 + 0.893441I
a = 0.577793 1.098140I
b = 2.58550 + 0.33210I
8.83417 + 3.29298I 0
u = 0.925590 0.893441I
a = 0.577793 + 1.098140I
b = 2.58550 0.33210I
8.83417 3.29298I 0
u = 1.036590 + 0.818046I
a = 1.25167 + 1.21714I
b = 0.36479 + 2.31829I
5.92831 + 7.90364I 0
u = 1.036590 0.818046I
a = 1.25167 1.21714I
b = 0.36479 2.31829I
5.92831 7.90364I 0
u = 1.22395 + 0.78126I
a = 1.33482 1.20924I
b = 1.04750 1.85828I
13.8837 + 14.9590I 0
u = 1.22395 0.78126I
a = 1.33482 + 1.20924I
b = 1.04750 + 1.85828I
13.8837 14.9590I 0
u = 1.23972 + 0.77641I
a = 1.33618 + 0.62822I
b = 0.38179 + 1.86130I
13.6512 + 6.7959I 0
u = 1.23972 0.77641I
a = 1.33618 0.62822I
b = 0.38179 1.86130I
13.6512 6.7959I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49819 + 0.01098I
a = 0.190759 0.578483I
b = 0.37515 + 1.84363I
8.03047 4.15846I 0
u = 1.49819 0.01098I
a = 0.190759 + 0.578483I
b = 0.37515 1.84363I
8.03047 + 4.15846I 0
u = 0.289365 + 0.082286I
a = 0.11001 + 1.91260I
b = 0.522176 0.667900I
0.00303 1.48232I 0.37531 + 3.95565I
u = 0.289365 0.082286I
a = 0.11001 1.91260I
b = 0.522176 + 0.667900I
0.00303 + 1.48232I 0.37531 3.95565I
u = 0.154903 + 0.210713I
a = 1.33546 1.46982I
b = 1.044520 + 0.254535I
2.59187 + 0.05584I 4.82458 + 1.57408I
u = 0.154903 0.210713I
a = 1.33546 + 1.46982I
b = 1.044520 0.254535I
2.59187 0.05584I 4.82458 1.57408I
9
II.
I
u
2
= hb, 3u
8
5u
7
+ · · · + a + 4, u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
3
=
3u
8
+ 5u
7
+ u
6
9u
5
+ 6u
4
+ 3u
3
10u
2
+ 8u 4
0
a
11
=
u
u
3
+ u
a
6
=
1
0
a
4
=
3u
8
+ 5u
7
+ u
6
9u
5
+ 6u
4
+ 3u
3
10u
2
+ 8u 4
0
a
5
=
u
4
u
2
+ 1
u
6
+ 2u
4
u
2
a
12
=
u
7
2u
5
+ 2u
3
u
8
+ u
7
+ 3u
6
2u
5
3u
4
+ 2u
3
+ 1
a
2
=
3u
8
+ 5u
7
+ u
6
9u
5
+ 5u
4
+ 3u
3
9u
2
+ 8u 5
u
6
2u
4
+ u
2
a
1
=
u
4
+ u
2
1
u
6
2u
4
+ u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 42u
8
+ 74u
7
+ 19u
6
137u
5
+ 75u
4
+ 54u
3
135u
2
+ 112u 56
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
8
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
9
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
10
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
11
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
12
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
8
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
9
, c
12
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.920144 0.598375I
b = 0
3.42837 + 2.09337I 5.34027 4.50528I
u = 0.772920 0.510351I
a = 0.920144 + 0.598375I
b = 0
3.42837 2.09337I 5.34027 + 4.50528I
u = 0.825933
a = 14.5113
b = 0
0.446489 205.930
u = 1.173910 + 0.391555I
a = 0.719281 + 0.119276I
b = 0
2.72642 1.33617I 1.00050 + 1.13735I
u = 1.173910 0.391555I
a = 0.719281 0.119276I
b = 0
2.72642 + 1.33617I 1.00050 1.13735I
u = 0.141484 + 0.739668I
a = 0.590648 + 0.449402I
b = 0
1.02799 2.45442I 2.30315 + 4.13179I
u = 0.141484 0.739668I
a = 0.590648 0.449402I
b = 0
1.02799 + 2.45442I 2.30315 4.13179I
u = 1.172470 + 0.500383I
a = 0.365868 0.247975I
b = 0
1.95319 + 7.08493I 0.39190 10.48669I
u = 1.172470 0.500383I
a = 0.365868 + 0.247975I
b = 0
1.95319 7.08493I 0.39190 + 10.48669I
13
III. I
u
3
= h−a
4
+ 6a
3
9a
2
+ b + 8a 3, a
5
6a
4
+ 9a
3
8a
2
+ 4a 1, u + 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
1
a
8
=
1
1
a
3
=
a
a
4
6a
3
+ 9a
2
8a + 3
a
11
=
1
0
a
6
=
a + 2
2a
4
11a
3
+ 12a
2
7a + 1
a
4
=
2a
4
12a
3
+ 18a
2
14a + 5
a
3
5a
2
+ 3a 1
a
5
=
2a
4
11a
3
+ 12a
2
8a + 3
2a
4
11a
3
+ 12a
2
7a + 1
a
12
=
0
3a
4
16a
3
+ 15a
2
7a + 1
a
2
=
a
3
5a
2
+ 5a 2
2a
4
12a
3
+ 17a
2
11a + 3
a
1
=
0
3a
4
16a
3
+ 15a
2
7a + 1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9a
4
+ 48a
3
48a
2
+ 32a
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
5u
4
+ 8u
3
3u
2
u 1
c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
u
4
+ 2u
3
u
2
+ u 1
c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
6
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
7
(u + 1)
5
c
8
, c
10
(u 1)
5
c
9
, c
12
u
5
c
11
u
5
3u
4
+ 4u
3
u
2
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
2
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
, c
6
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
7
, c
8
, c
10
(y 1)
5
c
9
, c
12
y
5
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.313425 + 0.691081I
b = 0.455697 1.200150I
4.22763 + 4.40083I 8.55516 1.78781I
u = 1.00000
a = 0.313425 0.691081I
b = 0.455697 + 1.200150I
4.22763 4.40083I 8.55516 + 1.78781I
u = 1.00000
a = 0.542256 + 0.333011I
b = 0.339110 0.822375I
1.31583 1.53058I 8.42731 + 4.45807I
u = 1.00000
a = 0.542256 0.333011I
b = 0.339110 + 0.822375I
1.31583 + 1.53058I 8.42731 4.45807I
u = 1.00000
a = 4.28864
b = 0.766826
0.756147 3.96490
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
5
5u
4
+ ··· u 1)(u
46
+ 61u
45
+ ··· + 62504u + 1)
c
2
((u 1)
9
)(u
5
+ u
4
+ ··· + u 1)(u
46
11u
45
+ ··· + 260u 1)
c
3
u
9
(u
5
u
4
+ ··· + u 1)(u
46
+ 8u
45
+ ··· + 9216u + 512)
c
4
((u + 1)
9
)(u
5
u
4
+ ··· + u + 1)(u
46
11u
45
+ ··· + 260u 1)
c
5
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
46
3u
45
+ ··· + 2u 1)
c
6
u
9
(u
5
+ u
4
+ ··· + u + 1)(u
46
+ 8u
45
+ ··· + 9216u + 512)
c
7
(u + 1)
5
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
46
+ 7u
45
+ ··· + 4u + 1)
c
8
(u 1)
5
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
46
17u
45
+ ··· 22u + 1)
c
9
u
5
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
46
+ 2u
45
+ ··· 32u + 32)
c
10
(u 1)
5
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
46
+ 7u
45
+ ··· + 4u + 1)
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
46
3u
45
+ ··· + 2u 1)
c
12
u
5
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
46
+ 2u
45
+ ··· 32u + 32)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
9
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
· (y
46
141y
45
+ ··· 3903085204y + 1)
c
2
, c
4
((y 1)
9
)(y
5
5y
4
+ ··· y 1)(y
46
61y
45
+ ··· 62504y + 1)
c
3
, c
6
y
9
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
· (y
46
+ 60y
45
+ ··· 71827456y + 262144)
c
5
, c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
46
y
45
+ ··· 32y + 1)
c
7
, c
10
(y 1)
5
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
46
17y
45
+ ··· 22y + 1)
c
8
(y 1)
5
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
46
+ 31y
45
+ ··· + 246y + 1)
c
9
, c
12
y
5
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
46
+ 36y
45
+ ··· + 8704y + 1024)
19