12n
0133
(K12n
0133
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 11 4 9 11 1 8 5 10
Solving Sequence
9,11
8
4,7
3 6 5 12 10 1 2
c
8
c
7
c
3
c
6
c
5
c
11
c
10
c
12
c
1
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
13
+ 5u
12
2u
11
16u
10
10u
9
+ 16u
8
+ 28u
7
+ 10u
6
19u
5
25u
4
7u
3
+ 6u
2
+ 2b + 5u,
u
13
4u
12
3u
11
+ 8u
10
+ 14u
9
18u
7
21u
6
5u
5
+ 16u
4
+ 17u
3
+ 4u
2
+ 2a 4u 5,
u
14
+ 3u
13
9u
11
8u
10
+ 8u
9
+ 18u
8
+ 9u
7
10u
6
18u
5
6u
4
+ 6u
3
+ 6u
2
+ 2u 1i
I
u
2
= h−1.17690 × 10
65
u
57
3.97295 × 10
65
u
56
+ ··· + 3.56133 × 10
64
b 4.96718 × 10
63
,
6.29210 × 10
64
u
57
8.59795 × 10
64
u
56
+ ··· + 7.12266 × 10
64
a 4.18226 × 10
65
, u
58
+ 4u
57
+ ··· 5u + 1i
I
u
3
= hu
2
+ b + u 1, a + u, u
3
+ u
2
1i
I
u
4
= h4u
2
a + 6au + b + 4a + 1, 2u
2
a + a
2
au 2u
2
+ 2a u + 2, u
3
+ u
2
1i
I
u
5
= hb u 2, a + 2u + 3, u
2
+ u 1i
I
u
6
= hb 2a + 2, a
2
a 1, u 1i
* 6 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h2u
13
+5u
12
+· · ·+2b+5u, u
13
4u
12
+· · ·+2a5, u
14
+3u
13
+· · ·+2u1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
1
2
u
13
+ 2u
12
+ ··· + 2u +
5
2
u
13
5
2
u
12
+ ··· 3u
2
5
2
u
a
7
=
u
2
+ 1
u
2
a
3
=
1
2
u
13
+
3
2
u
12
+ ··· +
5
2
u + 2
1
2
u
13
2u
12
+ ··· u
1
2
a
6
=
1
2
u
13
+
3
2
u
12
+ ··· +
3
2
u + 2
1
2
u
12
3
2
u
11
+ ···
1
2
u
1
2
a
5
=
1
2
u
13
+
3
2
u
12
+ ··· +
3
2
u + 2
u
12
5
2
u
11
+ ··· u
1
2
a
12
=
u
11
u
10
+ 3u
9
+ 4u
8
3u
7
6u
6
2u
5
+ 3u
4
+ 5u
3
+ u
2
2u 1
u
13
+
3
2
u
12
+ ··· + 3u
2
+
3
2
u
a
10
=
u
u
3
+ u
a
1
=
1
2
u
13
+ u
12
+ ··· u
3
2
1
2
u
13
+ u
12
+ ··· +
7
2
u
2
+ u
a
2
=
1
2
u
13
3
2
u
12
+ ···
3
2
u
3
2
1
2
u
13
1
2
u
12
+ ··· +
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
13
+3u
12
15u
11
24u
10
+14u
9
+44u
8
+18u
7
27u
6
52u
5
25u
4
+14u
3
+10u
2
+3u11
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
14
+ 9u
13
+ ··· + 16u + 1
c
2
, c
4
, c
8
c
10
u
14
3u
13
+ ··· 2u 1
c
3
, c
6
, c
9
c
12
u
14
u
13
+ ··· 4u 1
c
5
, c
11
u
14
7u
13
+ ··· 24u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
14
5y
13
+ ··· 208y + 1
c
2
, c
4
, c
8
c
10
y
14
9y
13
+ ··· 16y + 1
c
3
, c
6
, c
9
c
12
y
14
+ 3y
13
+ ··· 8y + 1
c
5
, c
11
y
14
7y
13
+ ··· + 384y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.242991 + 0.933745I
a = 0.20291 + 1.67953I
b = 0.821533 + 0.270883I
1.33116 5.50874I 7.69545 + 3.70076I
u = 0.242991 0.933745I
a = 0.20291 1.67953I
b = 0.821533 0.270883I
1.33116 + 5.50874I 7.69545 3.70076I
u = 0.951606 + 0.107631I
a = 0.80680 + 1.21543I
b = 3.80232 + 0.74412I
2.88995 0.46660I 33.6526 15.6404I
u = 0.951606 0.107631I
a = 0.80680 1.21543I
b = 3.80232 0.74412I
2.88995 + 0.46660I 33.6526 + 15.6404I
u = 0.389011 + 0.665748I
a = 0.507976 + 0.255319I
b = 0.587054 + 0.784524I
3.75566 + 0.17244I 4.31674 1.33622I
u = 0.389011 0.665748I
a = 0.507976 0.255319I
b = 0.587054 0.784524I
3.75566 0.17244I 4.31674 + 1.33622I
u = 1.217360 + 0.433191I
a = 0.051195 + 0.233560I
b = 0.695133 + 0.745943I
1.53918 + 8.57795I 13.9694 8.6920I
u = 1.217360 0.433191I
a = 0.051195 0.233560I
b = 0.695133 0.745943I
1.53918 8.57795I 13.9694 + 8.6920I
u = 1.208510 + 0.461890I
a = 1.195780 0.437447I
b = 1.55260 0.60463I
7.24910 2.92807I 16.0849 + 1.6852I
u = 1.208510 0.461890I
a = 1.195780 + 0.437447I
b = 1.55260 + 0.60463I
7.24910 + 2.92807I 16.0849 1.6852I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.31782
a = 0.941660
b = 0.882448
10.4546 24.6220
u = 1.28364 + 0.61767I
a = 1.46437 0.09958I
b = 2.38982 1.44096I
4.9818 + 17.0516I 13.2441 9.4300I
u = 1.28364 0.61767I
a = 1.46437 + 0.09958I
b = 2.38982 + 1.44096I
4.9818 17.0516I 13.2441 + 9.4300I
u = 0.263596
a = 2.70137
b = 0.733954
0.942520 9.45120
6
II.
I
u
2
= h−1.18×10
65
u
57
3.97×10
65
u
56
+· · ·+3.56×10
64
b4.97×10
63
, 6.29×
10
64
u
57
8.60×10
64
u
56
+· · ·+7.12×10
64
a4.18×10
65
, u
58
+4u
57
+· · ·5u+1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
0.883391u
57
+ 1.20713u
56
+ ··· 9.91542u + 5.87176
3.30467u
57
+ 11.1558u
56
+ ··· 6.41751u + 0.139475
a
7
=
u
2
+ 1
u
2
a
3
=
0.793575u
57
+ 0.365747u
56
+ ··· 3.89250u + 4.38523
1.32573u
57
+ 4.64753u
56
+ ··· + 4.91950u 1.75010
a
6
=
1.70888u
57
+ 4.42480u
56
+ ··· 6.68595u + 4.41639
2.56867u
57
+ 8.73466u
56
+ ··· 12.4165u + 1.63075
a
5
=
1.70888u
57
+ 4.42480u
56
+ ··· 6.68595u + 4.41639
0.322307u
57
+ 1.39608u
56
+ ··· + 1.34584u 0.779945
a
12
=
1.31808u
57
+ 3.67421u
56
+ ··· + 1.92169u 2.00892
0.489553u
57
+ 1.26691u
56
+ ··· 0.411200u + 0.625023
a
10
=
u
u
3
+ u
a
1
=
2.12433u
57
+ 5.66107u
56
+ ··· + 3.12772u 2.10774
0.0988242u
57
1.20154u
56
+ ··· + 7.79161u 0.711908
a
2
=
0.453494u
57
0.227312u
56
+ ··· + 6.41674u 3.64552
2.66084u
57
9.70894u
56
+ ··· + 11.5745u 1.08534
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8.86204u
57
+ 41.6548u
56
+ ··· + 50.2522u 23.8526
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
58
+ 32u
57
+ ··· + 25u + 1
c
2
, c
4
, c
8
c
10
u
58
4u
57
+ ··· + 5u + 1
c
3
, c
6
, c
9
c
12
u
58
4u
57
+ ··· + 32u 4
c
5
, c
11
(u
29
+ 2u
28
+ ··· 28u 8)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
58
8y
57
+ ··· + 195y + 1
c
2
, c
4
, c
8
c
10
y
58
32y
57
+ ··· 25y + 1
c
3
, c
6
, c
9
c
12
y
58
+ 18y
57
+ ··· 984y + 16
c
5
, c
11
(y
29
28y
28
+ ··· + 2896y 64)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.988988
a = 0.481132
b = 5.97136
2.67255 211.680
u = 0.852515 + 0.455377I
a = 0.096402 + 0.221595I
b = 1.14950 + 1.39220I
4.34822 + 5.30129I 10.14110 5.91971I
u = 0.852515 0.455377I
a = 0.096402 0.221595I
b = 1.14950 1.39220I
4.34822 5.30129I 10.14110 + 5.91971I
u = 0.875378 + 0.395680I
a = 1.17395 1.12502I
b = 0.55207 1.63441I
1.15248 + 2.97907I 9.53425 4.84429I
u = 0.875378 0.395680I
a = 1.17395 + 1.12502I
b = 0.55207 + 1.63441I
1.15248 2.97907I 9.53425 + 4.84429I
u = 0.382222 + 0.979860I
a = 0.37822 + 1.49048I
b = 0.968996 + 0.458325I
4.05295 + 3.42058I 12.00000 4.03802I
u = 0.382222 0.979860I
a = 0.37822 1.49048I
b = 0.968996 0.458325I
4.05295 3.42058I 12.00000 + 4.03802I
u = 1.06017
a = 1.48801
b = 1.19467
10.6310 48.5360
u = 0.216051 + 1.075610I
a = 0.49789 1.82352I
b = 0.930330 0.518578I
1.66044 11.01250I 12.00000 + 0.I
u = 0.216051 1.075610I
a = 0.49789 + 1.82352I
b = 0.930330 + 0.518578I
1.66044 + 11.01250I 12.00000 + 0.I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.994844 + 0.502352I
a = 0.026325 0.357537I
b = 1.077780 0.102508I
0.488787 + 0.370462I 0
u = 0.994844 0.502352I
a = 0.026325 + 0.357537I
b = 1.077780 + 0.102508I
0.488787 0.370462I 0
u = 0.108845 + 0.869895I
a = 0.31064 + 1.79296I
b = 0.569231 + 0.371365I
3.19564 4.35308I 12.04263 + 3.74313I
u = 0.108845 0.869895I
a = 0.31064 1.79296I
b = 0.569231 0.371365I
3.19564 + 4.35308I 12.04263 3.74313I
u = 1.006590 + 0.537430I
a = 0.312868 + 0.518025I
b = 0.632775 0.100970I
2.03816 + 4.43643I 0
u = 1.006590 0.537430I
a = 0.312868 0.518025I
b = 0.632775 + 0.100970I
2.03816 4.43643I 0
u = 0.873306 + 0.762690I
a = 2.26083 + 2.71765I
b = 0.21388 + 2.77675I
1.81502 + 2.87998I 0
u = 0.873306 0.762690I
a = 2.26083 2.71765I
b = 0.21388 2.77675I
1.81502 2.87998I 0
u = 0.836851 + 0.036106I
a = 0.0838767 0.0224097I
b = 0.00910 4.38592I
1.81502 2.87998I 58.6220 + 17.5185I
u = 0.836851 0.036106I
a = 0.0838767 + 0.0224097I
b = 0.00910 + 4.38592I
1.81502 + 2.87998I 58.6220 17.5185I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.654785 + 0.491061I
a = 0.267178 + 0.146980I
b = 0.936070 0.955868I
4.90257 1.34329I 7.80264 + 1.36225I
u = 0.654785 0.491061I
a = 0.267178 0.146980I
b = 0.936070 + 0.955868I
4.90257 + 1.34329I 7.80264 1.36225I
u = 1.141310 + 0.406924I
a = 1.042680 0.445981I
b = 1.124050 0.134041I
4.05295 + 3.42058I 0
u = 1.141310 0.406924I
a = 1.042680 + 0.445981I
b = 1.124050 + 0.134041I
4.05295 3.42058I 0
u = 0.787150 + 0.924733I
a = 1.205180 0.532327I
b = 1.38107 + 0.43654I
4.90257 + 1.34329I 0
u = 0.787150 0.924733I
a = 1.205180 + 0.532327I
b = 1.38107 0.43654I
4.90257 1.34329I 0
u = 0.000304 + 0.780908I
a = 0.24339 2.24468I
b = 0.267868 0.277636I
3.74876 1.54341I 12.07483 + 3.03548I
u = 0.000304 0.780908I
a = 0.24339 + 2.24468I
b = 0.267868 + 0.277636I
3.74876 + 1.54341I 12.07483 3.03548I
u = 1.120680 + 0.529353I
a = 1.175230 0.118199I
b = 1.86181 1.77127I
3.19564 4.35308I 0
u = 1.120680 0.529353I
a = 1.175230 + 0.118199I
b = 1.86181 + 1.77127I
3.19564 + 4.35308I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.665448 + 0.320577I
a = 1.75785 0.27970I
b = 0.427413 0.048282I
0.488787 + 0.370462I 8.36692 2.50640I
u = 0.665448 0.320577I
a = 1.75785 + 0.27970I
b = 0.427413 + 0.048282I
0.488787 0.370462I 8.36692 + 2.50640I
u = 1.209970 + 0.458074I
a = 1.109810 0.614505I
b = 2.00916 2.00839I
7.27243 + 6.00653I 0
u = 1.209970 0.458074I
a = 1.109810 + 0.614505I
b = 2.00916 + 2.00839I
7.27243 6.00653I 0
u = 1.264110 + 0.277934I
a = 0.094671 0.217784I
b = 0.589009 + 0.036358I
1.15248 2.97907I 0
u = 1.264110 0.277934I
a = 0.094671 + 0.217784I
b = 0.589009 0.036358I
1.15248 + 2.97907I 0
u = 1.278760 + 0.279605I
a = 0.874635 + 0.506037I
b = 1.179270 + 0.382768I
3.74876 + 1.54341I 0
u = 1.278760 0.279605I
a = 0.874635 0.506037I
b = 1.179270 0.382768I
3.74876 1.54341I 0
u = 0.689587
a = 6.16946
b = 5.31315
2.67255 211.680
u = 1.251940 + 0.396137I
a = 1.204600 + 0.452476I
b = 2.28308 + 2.02996I
7.39364 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.251940 0.396137I
a = 1.204600 0.452476I
b = 2.28308 2.02996I
7.39364 0
u = 0.027420 + 0.672723I
a = 0.367381 + 0.017368I
b = 0.180737 0.719838I
2.03816 4.43643I 7.12586 + 5.70665I
u = 0.027420 0.672723I
a = 0.367381 0.017368I
b = 0.180737 + 0.719838I
2.03816 + 4.43643I 7.12586 5.70665I
u = 1.227590 + 0.512752I
a = 1.029830 + 0.433526I
b = 1.235900 + 0.213650I
6.56035 + 9.36152I 0
u = 1.227590 0.512752I
a = 1.029830 0.433526I
b = 1.235900 0.213650I
6.56035 9.36152I 0
u = 0.984255 + 0.909262I
a = 1.077810 + 0.708898I
b = 1.52408 0.24363I
4.34822 + 5.30129I 0
u = 0.984255 0.909262I
a = 1.077810 0.708898I
b = 1.52408 + 0.24363I
4.34822 5.30129I 0
u = 1.220950 + 0.580073I
a = 1.236460 + 0.202005I
b = 2.15316 + 1.56889I
1.66044 + 11.01250I 0
u = 1.220950 0.580073I
a = 1.236460 0.202005I
b = 2.15316 1.56889I
1.66044 11.01250I 0
u = 1.196500 + 0.654445I
a = 1.393060 + 0.026552I
b = 2.02586 + 1.44130I
6.56035 9.36152I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.196500 0.654445I
a = 1.393060 0.026552I
b = 2.02586 1.44130I
6.56035 + 9.36152I 0
u = 1.44823 + 0.32172I
a = 0.885882 0.795017I
b = 0.993193 0.775693I
7.27243 + 6.00653I 0
u = 1.44823 0.32172I
a = 0.885882 + 0.795017I
b = 0.993193 + 0.775693I
7.27243 6.00653I 0
u = 1.57371
a = 0.372440
b = 0.379153
10.6310 0
u = 0.242019 + 0.246574I
a = 1.39952 1.87926I
b = 0.768573 0.066926I
0.942618 9.31087 + 0.I
u = 0.242019 0.246574I
a = 1.39952 + 1.87926I
b = 0.768573 + 0.066926I
0.942618 9.31087 + 0.I
u = 0.257910 + 0.127141I
a = 2.21702 1.31285I
b = 0.746774 0.028572I
0.942376 9.38299 + 0.I
u = 0.257910 0.127141I
a = 2.21702 + 1.31285I
b = 0.746774 + 0.028572I
0.942376 9.38299 + 0.I
15
III. I
u
3
= hu
2
+ b + u 1, a + u, u
3
+ u
2
1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
u
u
2
u + 1
a
7
=
u
2
+ 1
u
2
a
3
=
1
0
a
6
=
0
u
a
5
=
0
u
a
12
=
0
u
a
10
=
u
u
2
+ u 1
a
1
=
u
2
1
u
2
a
2
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 12
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
3
u
2
+ 2u 1
c
2
, c
8
u
3
+ u
2
1
c
4
, c
10
u
3
u
2
+ 1
c
5
, c
11
u
3
c
6
, c
12
u
3
+ u
2
+ 2u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
9
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
8
c
10
y
3
y
2
+ 2y 1
c
5
, c
11
y
3
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 1.66236 + 0.56228I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 1.66236 0.56228I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.754878
a = 0.754878
b = 0.324718
2.22691 18.0390
19
IV.
I
u
4
= h4u
2
a + 6au + b + 4a + 1, 2u
2
a + a
2
au 2u
2
+2a u +2, u
3
+u
2
1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
a
4u
2
a 6au 4a 1
a
7
=
u
2
+ 1
u
2
a
3
=
au + u
2
u
3u
2
a 5au 3a u
a
6
=
0
u
2
a 2au + 2u
2
2a + 2u + 1
a
5
=
0
u
2
a 2au + 2u
2
2a + 2u + 1
a
12
=
0
u
a
10
=
u
u
2
+ u 1
a
1
=
u
2
1
u
2
a
2
=
au + u
2
u
u
2
a 2au + 2u
2
a + u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16u
2
a 21au 21a + 11u 1
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
(u
3
u
2
+ 2u 1)
2
c
2
, c
8
(u
3
+ u
2
1)
2
c
4
, c
10
(u
3
u
2
+ 1)
2
c
5
, c
11
u
6
c
6
, c
12
(u
3
+ u
2
+ 2u + 1)
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
9
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
8
c
10
(y
3
y
2
+ 2y 1)
2
c
5
, c
11
y
6
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.069840 + 0.424452I
b = 1.75488 0.64082I
6.04826 6.45445 + 0.I
u = 0.877439 + 0.744862I
a = 1.37744 2.29387I
b = 0.18504 1.97346I
1.91067 + 2.82812I 9.7272 + 14.7292I
u = 0.877439 0.744862I
a = 1.069840 0.424452I
b = 1.75488 + 0.64082I
6.04826 6.45445 + 0.I
u = 0.877439 0.744862I
a = 1.37744 + 2.29387I
b = 0.18504 + 1.97346I
1.91067 2.82812I 9.7272 14.7292I
u = 0.754878
a = 0.052721 + 0.320410I
b = 0.43016 3.46319I
1.91067 2.82812I 9.7272 14.7292I
u = 0.754878
a = 0.052721 0.320410I
b = 0.43016 + 3.46319I
1.91067 + 2.82812I 9.7272 + 14.7292I
23
V. I
u
5
= hb u 2, a + 2u + 3, u
2
+ u 1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
8
=
1
u 1
a
4
=
2u 3
u + 2
a
7
=
u
u 1
a
3
=
2u 3
u + 2
a
6
=
u
u 1
a
5
=
u
u
a
12
=
2u + 1
3u 1
a
10
=
u
u + 1
a
1
=
u
u
a
2
=
3u 3
2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 29
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
6
u
2
c
4
(u + 1)
2
c
5
, c
7
u
2
3u + 1
c
8
, c
9
u
2
+ u 1
c
10
, c
12
u
2
u 1
c
11
u
2
+ 3u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
6
y
2
c
5
, c
7
, c
11
y
2
7y + 1
c
8
, c
9
, c
10
c
12
y
2
3y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 4.23607
b = 2.61803
2.63189 29.0000
u = 1.61803
a = 0.236068
b = 0.381966
10.5276 29.0000
27
VI. I
u
6
= hb 2a + 2, a
2
a 1, u 1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
1
a
8
=
1
1
a
4
=
a
2a 2
a
7
=
0
1
a
3
=
a
a 2
a
6
=
a 1
3
a
5
=
a 1
a 2
a
12
=
3a 2
0
a
10
=
1
0
a
1
=
3a 2
0
a
2
=
a 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 29
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
2
3u + 1
c
2
, c
3
u
2
+ u 1
c
4
, c
6
u
2
u 1
c
5
u
2
+ 3u + 1
c
7
, c
8
(u 1)
2
c
9
, c
12
u
2
c
10
(u + 1)
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
y
2
7y + 1
c
2
, c
3
, c
4
c
6
y
2
3y + 1
c
7
, c
8
, c
10
(y 1)
2
c
9
, c
12
y
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 3.23607
2.63189 29.0000
u = 1.00000
a = 1.61803
b = 1.23607
10.5276 29.0000
31
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
((u 1)
2
)(u
2
3u + 1)(u
3
u
2
+ 2u 1)
3
(u
14
+ 9u
13
+ ··· + 16u + 1)
· (u
58
+ 32u
57
+ ··· + 25u + 1)
c
2
, c
8
((u 1)
2
)(u
2
+ u 1)(u
3
+ u
2
1)
3
(u
14
3u
13
+ ··· 2u 1)
· (u
58
4u
57
+ ··· + 5u + 1)
c
3
, c
9
u
2
(u
2
+ u 1)(u
3
u
2
+ 2u 1)
3
(u
14
u
13
+ ··· 4u 1)
· (u
58
4u
57
+ ··· + 32u 4)
c
4
, c
10
((u + 1)
2
)(u
2
u 1)(u
3
u
2
+ 1)
3
(u
14
3u
13
+ ··· 2u 1)
· (u
58
4u
57
+ ··· + 5u + 1)
c
5
, c
11
u
9
(u
2
3u + 1)(u
2
+ 3u + 1)(u
14
7u
13
+ ··· 24u + 8)
· (u
29
+ 2u
28
+ ··· 28u 8)
2
c
6
, c
12
u
2
(u
2
u 1)(u
3
+ u
2
+ 2u + 1)
3
(u
14
u
13
+ ··· 4u 1)
· (u
58
4u
57
+ ··· + 32u 4)
32
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
((y 1)
2
)(y
2
7y + 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
14
5y
13
+ ··· 208y + 1)
· (y
58
8y
57
+ ··· + 195y + 1)
c
2
, c
4
, c
8
c
10
((y 1)
2
)(y
2
3y + 1)(y
3
y
2
+ 2y 1)
3
(y
14
9y
13
+ ··· 16y + 1)
· (y
58
32y
57
+ ··· 25y + 1)
c
3
, c
6
, c
9
c
12
y
2
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)
3
(y
14
+ 3y
13
+ ··· 8y + 1)
· (y
58
+ 18y
57
+ ··· 984y + 16)
c
5
, c
11
y
9
(y
2
7y + 1)
2
(y
14
7y
13
+ ··· + 384y + 64)
· (y
29
28y
28
+ ··· + 2896y 64)
2
33