12n
0134
(K12n
0134
)
A knot diagram
1
Linearized knot diagam
3 5 6 2 11 3 10 12 7 8 5 9
Solving Sequence
8,11
10
3,7
6 5 12 2 1 4 9
c
10
c
7
c
6
c
5
c
11
c
2
c
1
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.24021 × 10
18
u
33
+ 1.24343 × 10
19
u
32
+ ··· + 3.99716 × 10
18
b + 8.38466 × 10
18
,
6.30553 × 10
18
u
33
4.12415 × 10
19
u
32
+ ··· + 3.99716 × 10
18
a 2.46809 × 10
18
, u
34
7u
33
+ ··· + 2u + 1i
I
u
2
= hu
7
2u
6
2u
5
+ 4u
4
+ 2u
3
u
2
+ b u 3, 2u
7
2u
6
5u
5
+ 4u
4
+ 3u
3
+ a + u 3,
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
3
= ha
4
+ 6a
3
+ 9a
2
+ b + 8a + 3, a
5
+ 6a
4
+ 9a
3
+ 8a
2
+ 4a + 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.24×10
18
u
33
+1.24×10
19
u
32
+· · ·+4.00×10
18
b+8.38×10
18
, 6.31×
10
18
u
33
4.12×10
19
u
32
+· · ·+4.00×10
18
a2.47×10
18
, u
34
7u
33
+· · ·+2u+1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
1.57750u
33
+ 10.3177u
32
+ ··· + 58.2632u + 0.617461
0.560449u
33
3.11078u
32
+ ··· 2.59876u 2.09765
a
7
=
u
u
3
+ u
a
6
=
0.482803u
33
+ 3.08639u
32
+ ··· + 19.9484u + 6.63525
0.416532u
33
2.68773u
32
+ ··· 10.0892u 0.640452
a
5
=
0.0662706u
33
+ 0.398662u
32
+ ··· + 9.85920u + 5.99480
0.416532u
33
2.68773u
32
+ ··· 10.0892u 0.640452
a
12
=
0.761588u
33
5.20214u
32
+ ··· 34.4584u 1.20581
0.232220u
33
+ 1.56116u
32
+ ··· + 5.13105u + 1.09754
a
2
=
1.41061u
33
+ 9.24368u
32
+ ··· + 55.4109u 5.35535
0.349672u
33
1.74827u
32
+ ··· + 4.90386u 1.82853
a
1
=
0.904188u
33
+ 6.08322u
32
+ ··· + 37.0080u + 1.94216
0.467802u
33
2.77338u
32
+ ··· 5.68735u 1.23990
a
4
=
1.22385u
33
+ 7.98274u
32
+ ··· + 53.9857u 2.86208
0.480782u
33
2.58022u
32
+ ··· + 0.0452351u 1.99768
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2457323729169383761
1998580887488661448
u
33
+
19718500600259381097
1998580887488661448
u
32
+ ··· +
37446519631365374685
1998580887488661448
u +
3411256608626139411
999290443744330724
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
34
+ 50u
33
+ ··· + 7022u + 1
c
2
, c
4
u
34
10u
33
+ ··· 94u + 1
c
3
, c
6
u
34
+ 6u
33
+ ··· + 1408u + 256
c
5
, c
11
u
34
3u
33
+ ··· + 2u 1
c
7
, c
9
, c
10
u
34
7u
33
+ ··· + 2u + 1
c
8
, c
12
u
34
+ 2u
33
+ ··· 160u 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
34
122y
33
+ ··· 49242950y + 1
c
2
, c
4
y
34
50y
33
+ ··· 7022y + 1
c
3
, c
6
y
34
+ 54y
33
+ ··· 5357568y + 65536
c
5
, c
11
y
34
y
33
+ ··· 14y + 1
c
7
, c
9
, c
10
y
34
41y
33
+ ··· 152y + 1
c
8
, c
12
y
34
36y
33
+ ··· 3584y + 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.828237 + 0.495417I
a = 0.82004 + 1.25784I
b = 0.297004 1.016390I
3.57437 + 2.68652I 15.9734 5.7320I
u = 0.828237 0.495417I
a = 0.82004 1.25784I
b = 0.297004 + 1.016390I
3.57437 2.68652I 15.9734 + 5.7320I
u = 1.118840 + 0.182636I
a = 0.583692 0.292922I
b = 0.076416 0.398409I
1.23502 + 0.89870I 5.08124 + 0.75731I
u = 1.118840 0.182636I
a = 0.583692 + 0.292922I
b = 0.076416 + 0.398409I
1.23502 0.89870I 5.08124 0.75731I
u = 1.120600 + 0.202178I
a = 2.46416 + 1.89535I
b = 0.325798 0.681195I
4.37210 0.56022I 15.7627 + 4.5815I
u = 1.120600 0.202178I
a = 2.46416 1.89535I
b = 0.325798 + 0.681195I
4.37210 + 0.56022I 15.7627 4.5815I
u = 0.742537 + 0.037896I
a = 0.475409 + 1.067840I
b = 0.412066 1.299410I
7.07612 + 4.33049I 3.74509 2.01968I
u = 0.742537 0.037896I
a = 0.475409 1.067840I
b = 0.412066 + 1.299410I
7.07612 4.33049I 3.74509 + 2.01968I
u = 0.680778 + 1.106570I
a = 0.675818 0.192256I
b = 0.34011 + 1.96867I
13.7038 + 7.6996I 12.45976 4.30474I
u = 0.680778 1.106570I
a = 0.675818 + 0.192256I
b = 0.34011 1.96867I
13.7038 7.6996I 12.45976 + 4.30474I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.658915 + 1.120700I
a = 0.791484 + 0.062467I
b = 0.06244 1.83419I
13.63590 0.50051I 12.57609 + 0.I
u = 0.658915 1.120700I
a = 0.791484 0.062467I
b = 0.06244 + 1.83419I
13.63590 + 0.50051I 12.57609 + 0.I
u = 0.191366 + 0.643732I
a = 0.392780 + 0.788789I
b = 0.215796 + 0.185230I
1.50616 + 2.15286I 1.89528 3.55598I
u = 0.191366 0.643732I
a = 0.392780 0.788789I
b = 0.215796 0.185230I
1.50616 2.15286I 1.89528 + 3.55598I
u = 0.605994 + 0.208022I
a = 0.17110 + 2.29061I
b = 0.87873 + 2.06096I
2.48043 + 0.15884I 35.3818 0.1674I
u = 0.605994 0.208022I
a = 0.17110 2.29061I
b = 0.87873 2.06096I
2.48043 0.15884I 35.3818 + 0.1674I
u = 1.44687
a = 0.544436
b = 0.999548
7.19178 11.0680
u = 1.42160 + 0.31037I
a = 0.011571 0.200035I
b = 0.460927 + 0.211334I
3.73420 5.65524I 8.00000 + 0.I
u = 1.42160 0.31037I
a = 0.011571 + 0.200035I
b = 0.460927 0.211334I
3.73420 + 5.65524I 8.00000 + 0.I
u = 0.489955
a = 0.772996
b = 0.364452
0.859418 11.8170
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.67742 + 0.07121I
a = 0.18227 + 1.86528I
b = 1.07725 2.72182I
10.90540 1.31562I 0
u = 1.67742 0.07121I
a = 0.18227 1.86528I
b = 1.07725 + 2.72182I
10.90540 + 1.31562I 0
u = 1.71439 + 0.00920I
a = 0.20683 1.69911I
b = 0.11557 + 1.98219I
16.1286 4.0950I 0
u = 1.71439 0.00920I
a = 0.20683 + 1.69911I
b = 0.11557 1.98219I
16.1286 + 4.0950I 0
u = 1.67967 + 0.41006I
a = 0.59407 + 1.55358I
b = 0.76478 2.07350I
18.1726 13.4286I 0
u = 1.67967 0.41006I
a = 0.59407 1.55358I
b = 0.76478 + 2.07350I
18.1726 + 13.4286I 0
u = 1.67836 + 0.42976I
a = 0.707434 1.159530I
b = 0.51034 + 1.64958I
18.3538 5.3451I 0
u = 1.67836 0.42976I
a = 0.707434 + 1.159530I
b = 0.51034 1.64958I
18.3538 + 5.3451I 0
u = 1.73009 + 0.14735I
a = 0.17568 1.56407I
b = 0.48186 + 1.53845I
12.71500 5.35446I 0
u = 1.73009 0.14735I
a = 0.17568 + 1.56407I
b = 0.48186 1.53845I
12.71500 + 5.35446I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.77751
a = 0.420567
b = 0.892648
15.4063 0
u = 0.178439 + 0.031286I
a = 1.55747 3.87733I
b = 0.336239 + 0.914967I
0.57544 + 1.50411I 4.52476 4.55824I
u = 0.178439 0.031286I
a = 1.55747 + 3.87733I
b = 0.336239 0.914967I
0.57544 1.50411I 4.52476 + 4.55824I
u = 0.112437
a = 6.15718
b = 1.11629
2.28474 0.324850
8
II. I
u
2
= hu
7
2u
6
2u
5
+ 4u
4
+ 2u
3
u
2
+ b u 3, 2u
7
2u
6
5u
5
+
4u
4
+ 3u
3
+ a + u 3, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
2u
7
+ 2u
6
+ 5u
5
4u
4
3u
3
u + 3
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ u
2
+ u + 3
a
7
=
u
u
3
+ u
a
6
=
u
u
3
+ u
a
5
=
u
3
+ 2u
u
3
+ u
a
12
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
2
=
2u
7
+ 2u
6
+ 5u
5
4u
4
2u
3
3u + 3
u
7
+ 2u
6
+ 2u
5
4u
4
u
3
+ u
2
+ 3
a
1
=
u
3
2u
u
3
u
a
4
=
2u
7
+ 2u
6
+ 5u
5
4u
4
3u
3
u + 3
u
7
+ 2u
6
+ 2u
5
4u
4
2u
3
+ u
2
+ u + 3
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
7
38u
6
48u
5
+ 85u
4
+ 39u
3
27u
2
5u 70
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
7
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
8
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
9
, c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
12
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
9
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
8
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.23903 + 1.07030I
b = 0.281371 1.128550I
2.68559 + 1.13123I 12.74421 + 0.55338I
u = 1.180120 0.268597I
a = 1.23903 1.07030I
b = 0.281371 + 1.128550I
2.68559 1.13123I 12.74421 0.55338I
u = 0.108090 + 0.747508I
a = 0.188536 + 0.513699I
b = 0.208670 + 0.825203I
0.51448 + 2.57849I 9.60894 4.72239I
u = 0.108090 0.747508I
a = 0.188536 0.513699I
b = 0.208670 0.825203I
0.51448 2.57849I 9.60894 + 4.72239I
u = 1.37100
a = 0.942639
b = 0.829189
8.14766 20.4520
u = 1.334530 + 0.318930I
a = 0.271933 + 0.551071I
b = 0.284386 0.605794I
4.02461 6.44354I 12.4754 + 9.9976I
u = 1.334530 0.318930I
a = 0.271933 0.551071I
b = 0.284386 + 0.605794I
4.02461 + 6.44354I 12.4754 9.9976I
u = 0.463640
a = 3.49976
b = 2.74744
2.48997 72.8910
12
III. I
u
3
= ha
4
+ 6a
3
+ 9a
2
+ b + 8a + 3, a
5
+ 6a
4
+ 9a
3
+ 8a
2
+ 4a + 1, u + 1i
(i) Arc colorings
a
8
=
0
1
a
11
=
1
0
a
10
=
1
1
a
3
=
a
a
4
6a
3
9a
2
8a 3
a
7
=
1
0
a
6
=
a 2
2a
4
11a
3
12a
2
7a 1
a
5
=
2a
4
11a
3
12a
2
8a 3
2a
4
11a
3
12a
2
7a 1
a
12
=
0
3a
4
16a
3
15a
2
7a 1
a
2
=
a
3
+ 5a
2
+ 5a + 2
2a
4
12a
3
17a
2
11a 3
a
1
=
0
3a
4
16a
3
15a
2
7a 1
a
4
=
2a
4
12a
3
18a
2
14a 5
a
3
+ 5a
2
+ 3a + 1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7a
4
32a
3
8a
2
12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
5u
4
+ 8u
3
3u
2
u 1
c
2
u
5
+ u
4
2u
3
u
2
+ u 1
c
3
u
5
u
4
+ 2u
3
u
2
+ u 1
c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
6
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
7
(u 1)
5
c
8
, c
12
u
5
c
9
, c
10
(u + 1)
5
c
11
u
5
3u
4
+ 4u
3
u
2
u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
2
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
3
, c
6
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
7
, c
9
, c
10
(y 1)
5
c
8
, c
12
y
5
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.313425 + 0.691081I
b = 0.455697 1.200150I
7.51750 4.40083I 22.0438 + 5.2094I
u = 1.00000
a = 0.313425 0.691081I
b = 0.455697 + 1.200150I
7.51750 + 4.40083I 22.0438 5.2094I
u = 1.00000
a = 0.542256 + 0.333011I
b = 0.339110 0.822375I
1.97403 + 1.53058I 13.4575 4.4032I
u = 1.00000
a = 0.542256 0.333011I
b = 0.339110 + 0.822375I
1.97403 1.53058I 13.4575 + 4.4032I
u = 1.00000
a = 4.28864
b = 0.766826
4.04602 2.99730
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u
5
5u
4
+ ··· u 1)(u
34
+ 50u
33
+ ··· + 7022u + 1)
c
2
((u 1)
8
)(u
5
+ u
4
+ ··· + u 1)(u
34
10u
33
+ ··· 94u + 1)
c
3
u
8
(u
5
u
4
+ ··· + u 1)(u
34
+ 6u
33
+ ··· + 1408u + 256)
c
4
((u + 1)
8
)(u
5
u
4
+ ··· + u + 1)(u
34
10u
33
+ ··· 94u + 1)
c
5
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
34
3u
33
+ ··· + 2u 1)
c
6
u
8
(u
5
+ u
4
+ ··· + u + 1)(u
34
+ 6u
33
+ ··· + 1408u + 256)
c
7
((u 1)
5
)(u
8
+ u
7
+ ··· + 2u 1)(u
34
7u
33
+ ··· + 2u + 1)
c
8
u
5
(u
8
u
7
+ ··· + 2u 1)(u
34
+ 2u
33
+ ··· 160u 32)
c
9
, c
10
((u + 1)
5
)(u
8
u
7
+ ··· 2u 1)(u
34
7u
33
+ ··· + 2u + 1)
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
34
3u
33
+ ··· + 2u 1)
c
12
u
5
(u
8
+ u
7
+ ··· 2u 1)(u
34
+ 2u
33
+ ··· 160u 32)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
8
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
· (y
34
122y
33
+ ··· 49242950y + 1)
c
2
, c
4
((y 1)
8
)(y
5
5y
4
+ ··· y 1)(y
34
50y
33
+ ··· 7022y + 1)
c
3
, c
6
y
8
(y
5
+ 3y
4
+ ··· y 1)(y
34
+ 54y
33
+ ··· 5357568y + 65536)
c
5
, c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
34
y
33
+ ··· 14y + 1)
c
7
, c
9
, c
10
(y 1)
5
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
34
41y
33
+ ··· 152y + 1)
c
8
, c
12
y
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
34
36y
33
+ ··· 3584y + 1024)
18