12n
0138
(K12n
0138
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 12 4 10 12 7 8 6 9
Solving Sequence
7,10
8
4,11
3 6 12 5 2 9 1
c
7
c
10
c
3
c
6
c
11
c
5
c
2
c
9
c
12
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h1.30613 × 10
24
u
22
+ 1.93530 × 10
25
u
21
+ ··· + 3.16864 × 10
26
b 1.61340 × 10
26
,
1.48301 × 10
26
u
22
+ 2.07464 × 10
27
u
21
+ ··· + 3.16864 × 10
26
a + 3.75365 × 10
28
,
u
23
+ 14u
22
+ ··· + 247u 1i
I
u
2
= h−676a
8
5525a
7
+ 10837a
6
7123a
5
92a
4
+ 4655a
3
6197a
2
+ 717b 295a + 1497,
a
9
+ 7a
8
25a
7
+ 34a
6
25a
5
+ 9a
4
+ 5a
3
6a
2
+ 1, u 1i
I
u
3
= h5a
2
u 3a
2
+ 12au + b 7a + 3u 1, a
3
a
2
u + a
2
+ 3au + 6a + 3u + 5, u
2
+ u 1i
I
u
4
= hb, 3u
2
+ a 5u 4, u
3
+ u
2
1i
* 4 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.31×10
24
u
22
+1.94×10
25
u
21
+· · ·+3.17×10
26
b1.61×10
26
, 1.48×10
26
u
22
+
2.07 × 10
27
u
21
+ · · · + 3.17 × 10
26
a + 3.75 × 10
28
, u
23
+ 14u
22
+ · · · + 247u 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
4
=
0.468025u
22
6.54739u
21
+ ··· + 247.949u 118.462
0.00412206u
22
0.0610765u
21
+ ··· + 2.33980u + 0.509176
a
11
=
u
u
3
+ u
a
3
=
0.472147u
22
6.60847u
21
+ ··· + 250.289u 117.953
0.00412206u
22
0.0610765u
21
+ ··· + 2.33980u + 0.509176
a
6
=
0.253629u
22
+ 3.54938u
21
+ ··· 137.567u + 62.4798
8.27189 × 10
6
u
22
+ 0.00149756u
21
+ ··· + 1.46879u 0.275118
a
12
=
0.0618338u
22
+ 0.867080u
21
+ ··· 30.7615u + 15.7102
0.00140785u
22
0.0182940u
21
+ ··· 0.437254u 0.0618338
a
5
=
0.273382u
22
+ 3.82624u
21
+ ··· 147.561u + 66.4442
0.000313866u
22
0.00313831u
21
+ ··· + 2.38335u 0.294871
a
2
=
0.264797u
22
3.70794u
21
+ ··· + 143.659u 63.5528
0.000313866u
22
+ 0.00313831u
21
+ ··· 2.38335u + 0.294871
a
9
=
u
u
a
1
=
0.0632652u
22
+ 0.887387u
21
+ ··· 30.6962u + 15.7102
0.0000236385u
22
+ 0.00201246u
21
+ ··· 0.372026u 0.0618418
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12439096516079350509692
1237751551862707466683597
u
22
+
24959142431741094135677015
158432198638426555735500416
u
21
+
··· +
1416393727615768311794426071
158432198638426555735500416
u
1337939601650771137272682937
158432198638426555735500416
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 23u
22
+ ··· + 12783u + 1
c
2
, c
4
u
23
7u
22
+ ··· 113u 1
c
3
, c
6
u
23
4u
22
+ ··· 36u + 8
c
5
, c
11
u
23
+ 3u
22
+ ··· 32u 64
c
7
, c
9
, c
10
u
23
14u
22
+ ··· + 247u + 1
c
8
, c
12
u
23
+ 5u
22
+ ··· + 4608u 512
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
39y
22
+ ··· + 163240279y 1
c
2
, c
4
y
23
23y
22
+ ··· + 12783y 1
c
3
, c
6
y
23
12y
22
+ ··· + 7568y 64
c
5
, c
11
y
23
+ 37y
22
+ ··· + 234496y 4096
c
7
, c
9
, c
10
y
23
48y
22
+ ··· + 59963y 1
c
8
, c
12
y
23
111y
22
+ ··· + 71041024y 262144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.970382
a = 8.07238
b = 0.439625
2.87501 99.4720
u = 0.718687 + 0.638413I
a = 0.403992 0.145437I
b = 0.282905 0.561433I
1.45854 + 3.25209I 3.51442 11.82565I
u = 0.718687 0.638413I
a = 0.403992 + 0.145437I
b = 0.282905 + 0.561433I
1.45854 3.25209I 3.51442 + 11.82565I
u = 0.820787 + 0.297606I
a = 3.29844 2.74934I
b = 0.271589 + 0.441556I
2.85899 0.09109I 11.2448 + 8.7640I
u = 0.820787 0.297606I
a = 3.29844 + 2.74934I
b = 0.271589 0.441556I
2.85899 + 0.09109I 11.2448 8.7640I
u = 0.989873 + 0.547667I
a = 0.262757 0.269042I
b = 0.904186 1.051940I
5.12106 6.15902I 10.50715 + 1.63362I
u = 0.989873 0.547667I
a = 0.262757 + 0.269042I
b = 0.904186 + 1.051940I
5.12106 + 6.15902I 10.50715 1.63362I
u = 0.736463
a = 0.794473
b = 0.0940545
1.10354 8.74790
u = 0.077756 + 0.538901I
a = 0.928505 + 0.171334I
b = 0.810706 + 0.505931I
0.87687 1.52898I 6.60742 + 3.54271I
u = 0.077756 0.538901I
a = 0.928505 0.171334I
b = 0.810706 0.505931I
0.87687 + 1.52898I 6.60742 3.54271I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.404196 + 0.182896I
a = 0.32709 + 2.82080I
b = 0.273102 1.253150I
2.20419 + 2.68521I 2.70136 + 6.44368I
u = 0.404196 0.182896I
a = 0.32709 2.82080I
b = 0.273102 + 1.253150I
2.20419 2.68521I 2.70136 6.44368I
u = 1.63114
a = 1.85070
b = 0.603575
9.92701 35.8110
u = 0.00408400
a = 117.446
b = 0.518673
1.19404 8.40790
u = 1.89245 + 0.70982I
a = 1.043110 0.396575I
b = 1.16222 + 1.51464I
15.7088 + 13.9110I 11.35191 5.40734I
u = 1.89245 0.70982I
a = 1.043110 + 0.396575I
b = 1.16222 1.51464I
15.7088 13.9110I 11.35191 + 5.40734I
u = 2.26833 + 0.53777I
a = 0.840120 + 0.152223I
b = 1.41200 1.76863I
19.7178 + 6.1351I 10.22986 1.96379I
u = 2.26833 0.53777I
a = 0.840120 0.152223I
b = 1.41200 + 1.76863I
19.7178 6.1351I 10.22986 + 1.96379I
u = 1.99410 + 1.87801I
a = 0.410446 + 0.386878I
b = 2.39957 0.70874I
14.2988 3.5584I 0
u = 1.99410 1.87801I
a = 0.410446 0.386878I
b = 2.39957 + 0.70874I
14.2988 + 3.5584I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.78866 + 0.30349I
a = 0.537585 0.114355I
b = 1.97498 1.71262I
14.2364 + 2.5672I 0
u = 2.78866 0.30349I
a = 0.537585 + 0.114355I
b = 1.97498 + 1.71262I
14.2364 2.5672I 0
u = 3.04646
a = 0.644751
b = 2.52063
18.9120 0
7
II. I
u
2
= h−676a
8
+ 717b + · · · 295a + 1497, a
9
+ 7a
8
+ · · · 6a
2
+ 1, u 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
1
a
8
=
1
1
a
4
=
a
0.942817a
8
+ 7.70572a
7
+ ··· + 0.411437a 2.08787
a
11
=
1
0
a
3
=
0.942817a
8
+ 7.70572a
7
+ ··· + 1.41144a 2.08787
0.942817a
8
+ 7.70572a
7
+ ··· + 0.411437a 2.08787
a
6
=
1.10600a
8
8.45607a
7
+ ··· + 2.08787a + 1.94282
2.28870a
8
17.4045a
7
+ ··· + 4.19107a + 2.41004
a
12
=
1.53556a
8
11.8131a
7
+ ··· + 2.37378a + 0.0794979
1.53556a
8
11.8131a
7
+ ··· + 2.37378a + 0.0794979
a
5
=
2.51743a
8
+ 18.9149a
7
+ ··· 5.17015a 3.72524
1.33473a
8
+ 9.96653a
7
+ ··· 3.06695a 3.25802
a
2
=
2.34589a
8
+ 17.6987a
7
+ ··· 4.60251a 4.32218
1.33473a
8
+ 9.96653a
7
+ ··· 3.06695a 3.25802
a
9
=
1
1
a
1
=
1.53556a
8
11.8131a
7
+ ··· + 2.37378a + 0.0794979
1.53556a
8
11.8131a
7
+ ··· + 2.37378a + 0.0794979
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
10493
717
a
8
+
26713
239
a
7
210605
717
a
6
+
75659
239
a
5
133631
717
a
4
+
11474
239
a
3
+
50845
717
a
2
6563
239
a
6150
239
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
2
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
3
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
4
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
5
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
6
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
7
(u 1)
9
c
8
, c
12
u
9
c
9
, c
10
(u + 1)
9
c
11
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
4
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
6
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
5
, c
11
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
9
, c
10
(y 1)
9
c
8
, c
12
y
9
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.162031 + 0.927542I
b = 0.140343 + 0.966856I
0.13850 + 2.09337I 6.65973 4.50528I
u = 1.00000
a = 0.162031 0.927542I
b = 0.140343 0.966856I
0.13850 2.09337I 6.65973 + 4.50528I
u = 1.00000
a = 0.990590 + 0.515152I
b = 0.796005 0.733148I
6.01628 1.33617I 13.00050 + 1.13735I
u = 1.00000
a = 0.990590 0.515152I
b = 0.796005 + 0.733148I
6.01628 + 1.33617I 13.00050 1.13735I
u = 1.00000
a = 0.702315 + 0.150499I
b = 0.728966 + 0.986295I
5.24306 7.08493I 11.6081 + 10.4867I
u = 1.00000
a = 0.702315 0.150499I
b = 0.728966 0.986295I
5.24306 + 7.08493I 11.6081 10.4867I
u = 1.00000
a = 0.405386 + 0.113252I
b = 0.628449 0.875112I
2.26187 2.45442I 9.69685 + 4.13179I
u = 1.00000
a = 0.405386 0.113252I
b = 0.628449 + 0.875112I
2.26187 + 2.45442I 9.69685 4.13179I
u = 1.00000
a = 9.89910
b = 0.512358
2.84338 193.930
11
III. I
u
3
=
h5a
2
u3a
2
+12au+b7a+3u1, a
3
a
2
u+a
2
+3au+6a+3u+5, u
2
+u1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u + 1
a
4
=
a
5a
2
u + 3a
2
12au + 7a 3u + 1
a
11
=
u
u + 1
a
3
=
5a
2
u + 3a
2
12au + 8a 3u + 1
5a
2
u + 3a
2
12au + 7a 3u + 1
a
6
=
a
2
u + a
2
3au + 2a u + 1
2a
2
u + a
2
5au + 3a 2u + 1
a
12
=
u
u + 1
a
5
=
a
2
u + a
2
3au + 2a u + 1
2a
2
u + a
2
5au + 3a 2u + 1
a
2
=
3a
2
u + 2a
2
8au + 5a 3u
2a
2
u + a
2
5au + 3a 2u + 1
a
9
=
u
u
a
1
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17a
2
u 9a
2
+ 24au 10a + 3u 18
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
11
u
6
c
6
(u
3
+ u
2
+ 2u + 1)
2
c
7
, c
8
(u
2
+ u 1)
3
c
9
, c
10
, c
12
(u
2
u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
11
y
6
c
7
, c
8
, c
9
c
10
, c
12
(y
2
3y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.832857
b = 0.569840
2.10041 19.1260
u = 0.618034
a = 0.22545 + 2.85986I
b = 0.215080 1.307140I
2.03717 2.82812I 27.3018 + 15.7639I
u = 0.618034
a = 0.22545 2.85986I
b = 0.215080 + 1.307140I
2.03717 + 2.82812I 27.3018 15.7639I
u = 1.61803
a = 0.255488 + 0.062996I
b = 0.215080 + 1.307140I
5.85852 + 2.82812I 12.61597 1.90115I
u = 1.61803
a = 0.255488 0.062996I
b = 0.215080 1.307140I
5.85852 2.82812I 12.61597 + 1.90115I
u = 1.61803
a = 2.10706
b = 0.569840
9.99610 82.0390
15
IV. I
u
4
= hb, 3u
2
+ a 5u 4, u
3
+ u
2
1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
4
=
3u
2
+ 5u + 4
0
a
11
=
u
u
2
+ u 1
a
3
=
3u
2
+ 5u + 4
0
a
6
=
1
0
a
12
=
u
2
1
u
2
+ u 1
a
5
=
2u
2
+ 2
2u
2
u + 2
a
2
=
5u
2
+ 5u + 2
2u
2
+ u 2
a
9
=
u
u
a
1
=
2u
2
2
2u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
2
+ 45u + 27
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
u
3
+ 3u
2
+ 2u 1
c
7
u
3
+ u
2
1
c
8
u
3
u
2
+ 2u 1
c
9
, c
10
u
3
u
2
+ 1
c
11
u
3
3u
2
+ 2u + 1
c
12
u
3
+ u
2
+ 2u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
11
y
3
5y
2
+ 10y 1
c
7
, c
9
, c
10
y
3
y
2
+ 2y 1
c
8
, c
12
y
3
+ 3y
2
+ 2y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.258045 0.197115I
b = 0
1.37919 + 2.82812I 7.96807 + 6.06881I
u = 0.877439 0.744862I
a = 0.258045 + 0.197115I
b = 0
1.37919 2.82812I 7.96807 6.06881I
u = 0.754878
a = 9.48391
b = 0
2.75839 72.9360
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u
3
u
2
+ 2u 1)
2
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
23
+ 23u
22
+ ··· + 12783u + 1)
c
2
(u 1)
3
(u
3
+ u
2
1)
2
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
23
7u
22
+ ··· 113u 1)
c
3
u
3
(u
3
u
2
+ 2u 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
23
4u
22
+ ··· 36u + 8)
c
4
(u + 1)
3
(u
3
u
2
+ 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
23
7u
22
+ ··· 113u 1)
c
5
u
6
(u
3
+ 3u
2
+ 2u 1)
· (u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
23
+ 3u
22
+ ··· 32u 64)
c
6
u
3
(u
3
+ u
2
+ 2u + 1)
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
23
4u
22
+ ··· 36u + 8)
c
7
((u 1)
9
)(u
2
+ u 1)
3
(u
3
+ u
2
1)(u
23
14u
22
+ ··· + 247u + 1)
c
8
u
9
(u
2
+ u 1)
3
(u
3
u
2
+ 2u 1)(u
23
+ 5u
22
+ ··· + 4608u 512)
c
9
, c
10
((u + 1)
9
)(u
2
u 1)
3
(u
3
u
2
+ 1)(u
23
14u
22
+ ··· + 247u + 1)
c
11
u
6
(u
3
3u
2
+ 2u + 1)
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
23
+ 3u
22
+ ··· 32u 64)
c
12
u
9
(u
2
u 1)
3
(u
3
+ u
2
+ 2u + 1)(u
23
+ 5u
22
+ ··· + 4608u 512)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
23
39y
22
+ ··· + 163240279y 1)
c
2
, c
4
(y 1)
3
(y
3
y
2
+ 2y 1)
2
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
23
23y
22
+ ··· + 12783y 1)
c
3
, c
6
y
3
(y
3
+ 3y
2
+ 2y 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
23
12y
22
+ ··· + 7568y 64)
c
5
, c
11
y
6
(y
3
5y
2
+ 10y 1)
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
23
+ 37y
22
+ ··· + 234496y 4096)
c
7
, c
9
, c
10
(y 1)
9
(y
2
3y + 1)
3
(y
3
y
2
+ 2y 1)
· (y
23
48y
22
+ ··· + 59963y 1)
c
8
, c
12
y
9
(y
2
3y + 1)
3
(y
3
+ 3y
2
+ 2y 1)
· (y
23
111y
22
+ ··· + 71041024y 262144)
21